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Local AM/FM parameters estimation: application to
sinusoidal modeling and blind audio source

separation
Dominique Fourer, François Auger, and Geoffroy Peeters

Abstract—This letter extends our recently introduced method
which was designed to estimate instantaneous frequency and
chirp rate of linearly modulated signals. Indeed, we derive
several new estimators related to our previous ones which
provide in the time-frequency plane all the signal parameters
of the investigated model: amplitude, frequency, and their local
modulations (AM/FM). Our estimators are first introduced and
compared in terms of statistical efficiency with theoretical bounds
and with other state-of-the-art estimators. Then, they are used to
improve spectral analysis applied to audio sinusoidal modeling.
Finally, they lead to a new source separation technique based on
coherent amplitude and frequency modulation that is evaluated
on real-world music signals.

Index Terms—time-frequency analysis, sinusoidal modeling,
source separation, audio processing.

I. INTRODUCTION

ANALYSIS and transformation of non-stationary signals
is an underlying task in audio processing with many

applications in Music Information Retrieval (MIR) and source
separation [1]. To this end, time-frequency and time-scale anal-
ysis [2] provide efficient frameworks for disentangling time-
varying multicomponent signals such as audio signals [3]–
[5]. The well-known Short-Time Fourier Transform (STFT)
[6] is an interesting tool, but is however limited, due to the
uncertainty principle and the resulting blurry Time-Frequency
(TF) representations [2], [7], [8]. Reassignment [9] provides
an efficient solution which improves the readability of a non-
reversible Time-Frequency Representation (TFR). Another so-
lution is offered by the synchrosqueezing method [10], [11], a
variant of the reassignment technique [9], [12], which admits
a signal reconstruction formula. A complementary approach,
sinusoidal modeling [13], [14] focuses on local estimation
of signal spectral parameters to allow transformations, signal
reconstruction and denoising. Several works [15]–[17] have
improved the efficiency of parameters estimation to allow
applications such as audio synthesis [18], audio coding [19],
[20] or blind- [1], [21] and informed-source separation [22].
This paper extends our previous work [23] where we proposed
several new Instantaneous Frequency (IF) and Chirp Rate (CR)
estimators applied to synchrosqueezing. As we promised in
future work perspectives, we now extend this approach for
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spectral analysis to develop a new sinusoidal modeling frame-
work applied to audio processing and blind source separation.
Our contributions are threefold:
• We derive new spectral parameter estimators for all the

parameters of a non-stationary signal model (Section II).
These estimators generalize our previous results presented
in [23].

• We propose an application of our new estimators to
spectral analysis, which leads to an enhanced signal
sinusoidal modeling method (Section III).

• We propose a new blind source separation method based
on our estimators, that is evaluated by numerical simula-
tions on real-world audio signals (Section IV).

II. LOCAL SIGNAL PARAMETERS ESTIMATION

A. Signal Model and Properties

We aim at estimating at every point of a TFR the signal
parameters of an amplitude- and frequency-modulated signal.
Thus, we consider the following second-order model and we
recall its properties [23]:

x(t) = eλx(t)+jφx(t) (1)

with λx(t) = lx + µxt+ νx
t2

2
(2)

and φx(t) = ϕx + ωxt+ αx
t2

2
(3)

where j is the imaginary unit such that j2 =−1. λx(t) and
φx(t) are respectively the log-amplitude and the phase, both
depending on the time instant t. This signal satisfies:

dx

dt
(t) =

(
dλx
dt

(t) + j
dφx
dt

(t)

)
x(t) = (qxt+ px)x(t) (4)

with qx = νx + jαx and px = µx + jωx. We define the STFT
of this signal using a differentiable analysis window h as:

Fhx (t, ω) =

∫
R
x(u)h(t− u)∗ e−jωu du (5)

= e−jωt
∫
R
x(t− u)h(u)∗ ejωudu. (6)

with z∗ the complex conjugate of z. Differentiating Fhx (t, ω)
with respect to t leads to:

∂Fhx
∂t

(t, ω) =

∫
R
x(u)

dh

dt
(t− u)∗ e−jωu du (7)

= −jωFhx (t, ω) + e−jωt
∫
R

dx

dt
(t− u)h(u)∗ ejωudu. (8)
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Replacing dx
dt (t−u) by (qx (t−u) + px) x(t− u) leads to

FDhx (t, ω) = −qxF T hx (t, ω) + (qxt+ px − jω)Fhx (t, ω) (9)

where FDhx (t, ω) and F T hx (t, ω) are two STFTs using the
analysis windows Dh(t) = dh

dt (t) and T h(t) = t h(t). A
second-order derivative with respect to t leads to:

FD
2h

x (t, ω) = −qxF T Dhx (t, ω) + (qxt+ px − jω)FDhx (t, ω)
(10)

and more generally for n ≥ 1 [23]:

FD
nh

x (t, ω)= −qxF T D
n−1h

x (t, ω)+(qxt+px−jω)FD
n−1h

x (t, ω)
(11)

On the other hand, differentiating Eq. (9) n − 1 times (for
n ≥ 2) with respect to ω leads to:

F T
n−1Dh

x (t, ω) + (n− 1)F T
n−2h

x (t, ω) =

−qx F T
nh

x (t, ω) + (qxt+ px − jω)F T
n−1h

x (t, ω). (12)

B. Overall parameters estimation

In order to recover the signal parameters estimators, we
build linear systems of equations thanks to the previously
introduced properties. Thus, combining Eqs. (9) and (11) for
n ≥ 2, leads to a linear system where qx and Ψx = qxt+ px
are unknown ((t,ω) was omitted for the sake of clarity):(
FD

n−1h
x −F T Dn−1h

x

Fhx −F T hx

)(
Ψx

qx

)
=

(
FD

nh
x + jωFD

n−1h
x

FDhx + jωFhx

)
.

(13)
When (13) is reversible (i.e. |Fhx (t, ω)|2 > 0), we obtain the
following equality:(

Ψx

qx

)
=

(
FD

n−1h
x −F T Dn−1h

x

Fhx −F T hx

)−1(
FD

nh
x + jωFD

n−1h
x

FDhx + jωFhx

)
which leads to the estimator called (tn) since it implies n-
order derivatives with respect to t:

q̂(tn)
x (t, ω) =

FDhx FD
n−1h

x − Fhx FD
nh

x

Fhx F
T Dn−1h
x − F T hx FDn−1h

x

(14)

Ψ̂(tn)
x (t, ω) = jω +

FDhx F T D
n−1h

x − F T hx FD
nh

x

Fhx F
T Dn−1h
x − F T hx FDn−1h

x

. (15)

Eq. (15) can be reworded as a function of q̂(tn)
x as follows:

Ψ̂(tn)
x (t, ω) =jω +

FDhx
Fhx
− FDhx

Fhx

+
FDhx F T D

n−1h
x − F T hx FD

nh
x

Fhx F
T Dn−1h
x − F T hx FDn−1h

x

=jω +
FDhx
Fhx

+ q̂(tn)
x

F T hx
Fhx

=ω̃(t, ω) + q̂(tn)
x (t, ω)(t− t̃(t, ω)) (16)

where t̃ and ω̃ are the complex reassignment operators, from
which the reassignment operators t̂ and ω̂ can be deduced as
in [9], [11], [24]:

t̂(t,ω) = Re
(
t̃(t,ω)

)
,with t̃(t,ω) =t− F T hx (t,ω)

Fhx (t,ω)
(17)

ω̂(t,ω) = Im (ω̃(t,ω)) ,with ω̃(t,ω)=jω +
FDhx (t,ω)

Fhx (t,ω)
. (18)

Thus, the signal definition in Eq. (1) allows to express
the instantaneous log-amplitude derivative and frequency as
λ̇x(t) = dλx

dt (t) = µx + νxt and φ̇x(t) = dφx

dt (t) = ωx + αxt.
These parameters can be estimated using Ψx(t) = λ̇x(t) +
jφ̇x(t) =qxt+ px, which can be estimated through Eq. (16).
This expression can be generalized by replacing q̂(tn)

x by any
modulation estimator q̂ as proposed in [11], [23] as:

Ψ̂x(t, ω) = ω̃(t, ω) + q̂x(t, ω)(t− t̃(t, ω)). (19)

Finally, we can derive the following estimators for the signal
model provided by Eq. (1) as:

ν̂x(t, ω) = Re
(
q̂x(t, ω)

)
, α̂x(t, ω)=Im

(
q̂x(t, ω)

)
(20)

ˆ̇
λx(t, ω) = Re

(
Ψ̂x(t, ω)

)
,

ˆ̇
φx(t, ω) =Im

(
Ψ̂x(t, ω)

)
(21)

and the log-amplitude and the phase of x at t = 0, can be
estimated by:

l̂x(t, ω) =log

(∣∣∣∣∣ Fhx (t,ω)

Gh(t, ω, Ψ̂x(t,ω), q̂x(t,ω))

∣∣∣∣∣
)

(22)

ϕ̂x(t, ω) =arg

(
Fhx (t,ω)

Gh(t, ω, Ψ̂x(t,ω), q̂x(t,ω))

)
(23)

with: Gh(t,ω,Ψ,q) =

∫
R
h(t− u)∗ e(Ψ−jω)u−q u2

2 du (24)

since we have Fhx (t, ω) = elx+jϕx Gh(t, ω,Ψx, qx).
New estimators can be deduced from Eqs. (20)-(23) when

an arbitrary local modulation estimator q̂x is used in Eq. (19).
For example, n-order derivatives of Fhx (t, ω) with respect to
ω lead to a new family of estimators involving q̂

(ωn)
x , which

is obtained from Eqs. (9) and (12) with n ≥ 2 [23]:

q̂(ωn)
x (t,ω) =

(F T
n−1Dh

x + (n−1)F T
n−2h

x )Fhx − F T
n−1h

x FDhx
F T n−1h
x F T hx − F T nh

x Fhx
.

(25)
III. SINUSOIDAL MODELING

Sinusoidal modeling [13], [14] provides a parametric rep-
resentation of a signal which allows to apply transformations
or signal synthesis [18]. We present here a description of our
analysis-synthesis algorithm, before completing a comparative
evaluation of the proposed estimators when they are applied
to synthetic signals in the presence of noise.
A. Proposed algorithm

We consider here a noisy multicomponent signal expressed
as:

x(t) =
∑
i∈I

xi(t) + ε(t) =
∑
i∈I

eλi(t)+jφi(t) + ε(t) (26)

ε(t) being an additive noise signal. The discretization process
leads to Fhx [k,m] = Fhx (kTs,

2πm
MTs

), with Ts = 1
Fs

the
sampling period, k ∈ Z and m = 0, 1, · · · ,M−1. We consider
an analysis window h of length L with a step ∆k = b(1−ρ)Lc
(where ρ ∈ [0, 1[ corresponds to the overlap ratio between two
adjacent analyzed signal frames). The discrete-time versions
of the analysis windows involving signal derivatives (i.e. Dnh,
T Dnh) are directly computed from their continuous-time
expressions. Our analysis-synthesis algorithm assumes that the
noise can be neglected when the signal is detected (located at a
local maximum) and that there is no more than one sinusoidal
component active at each time-frequency point.
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(a) log-amplitude lx
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(b) log-amplitude modulation λ̇x
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(c) frequency modulation αx
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(d) phase ϕx
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(e) frequency φ̇x
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Fig. 1. MSE (a)-(e) and RQFs comparison between (SM08), (SM12), (tn) and (ωn) at n ∈ {2, 4, 6}, for estimating signal parameters of a AM/FM-modulated
sinusoid merged with an additive white Gaussian noise.

a) Analysis:
1) For each frame centered at time instant k, local maxima

m ∈]0,M/2[ are detected (i.e. m satisfies:
|Fhx [k,m]| > |Fhx [k,m+1]| and |Fhx [k,m]| > |Fhx [k,m−1]|).

2) For each local maximum m, we estimate the vector
Pm[k] = (lx[m], ϕx[m], λ̇x[m], νx[m], φ̇x[m], αx[m])T .

3) In descending order of lx[m], each component associated
to m is reconstructed from Pm using Eq. (1) considering
that t = 0 is located at the center of the current frame.
If the residual energy increases when a component is
subtracted from the analyzed signal, it is ignored. Oth-
erwise, Pm is kept and the residual signal is considered
for processing other detected components.

4) We increase time index by k ← k + ∆k and we iterate
from step 1, while kTs is lower than the length of the
entire signal.

b) Synthesis: We synthesize using the overlap-add
method [25] each frame of signal x̂ centered at time instant k
moving by step ∆k, using the estimated Pm[k] and Eq. (26).

B. Application to synthesized signals

To further assess the efficiency of our proposed estimators,
we compare them with (SM08) [15] and (SM12) [16], and
with the Cramér-Rao Bounds (CRB) which were derived by
Zhou et al. in [26]. We consider an about 23 ms-long signal
sampled at Fs = 44.1 kHz (1023 samples), which contains one
sinusoid synthesized from Eq. (1) using uniformly distributed

parameters except for the amplitude which is constant. The
log-amplitude is fixed at lx = 0.18 and other parameters
are chosen as ϕx ∈ [−π,+π], µx ∈ [−100, 100], ωx ∈
[0, 2π Fs

2 ] rad.s−1 and αx ∈ [−104, 104] rad.s−2 ensuring
that 0 ≤ ωx + αxt ≤ 2π Fs

2 . This signal is merged with an
additional white Gaussian noise with Signal-to-Noise Ratio
(SNR) values going from −10 dB to +60 dB. In Fig. 1 (a)-
(e), we compute the Mean Squared Error (MSE) expressed
in dB for each estimated parameter, except for νx. In Fig.
1 (f), we compute the Reconstruction Quality Factor (RQF)
given by [12]: RQF(x, x̂) = 10 log10

(
||x||2
||x−x̂||2

)
measured

between the reference signal x and the synthesized one x̂
using all the estimated parameters. Thus, for each SNR value,
10,000 random signals are analyzed using a Hann window of
length L = 1023. According to Fig. 1, our results show that
estimators with higher orders (n ≥ 2) have a negligible effect
on the accuracy estimation for (tn). For (ωn), higher orders
obtain poorer results than (w2) which provides the overall best
results. (tn) estimators also obtain good performances and
significantly outperform the state-of-the art methods (SM08)
and (SM12), as evidenced at high SNR values.

C. Application to real-world signals

Table I shows the RQFs obtained on real-world audio
signals using the proposed estimators (t2), (ω2), (ω6), and
two state-of-the-art methods respectively called (SM08) [15]
and (SM12) [16]. Each analyzed signal has a duration of about
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TABLE I
RQFS EXPRESSED IN DB OBTAINED BY THE PROPOSED ALGORITHM

APPLIED ON REAL-WORLD AUDIO SIGNALS.

SM08 SM12 t2 ω2 ω6

speech 8.08 7.52 7.82 8.21 6.89
singing voice 14.40 14.02 15.05 15.13 13.62
saxophone 28.56 27.89 27.15 29.90 23.71
drums 6.54 6.52 6.72 6.63 4.29

5 seconds and is sampled at Fs = 22.05 kHz. Analysis uses
Hann windows with a length of about 46 ms except for the
drums signal (containing more transients) which is analyzed
with a window of 23 ms. Our results show that the (ω2) and
(t2) (only for the drums) methods obtain the best results when
they are compared to the state-of-the-art methods. The audio
samples used for this experiment can be found in [27].

IV. APPLICATION TO SOURCE SEPARATION

Now, we consider the blind source separation problem [1] in
the single-channel case, where the observed mixture contains
C ≥ 2 sources. Thus, we aim at recovering the sources sc
using the observed mixture expressed as:

x(t) =

C∑
c=1

sc(t) =

C∑
c=1

(∑
ic∈Ic

eλic (t)+jφic (t)

)
. (27)

We propose to solve this problem under the assumption that
each sinusoidal component i is assigned to only one source
c, characterized by the set Ic. Hence, blind source separation
consists here in a clustering problem which should be solved
using the component parameters directly estimated from x(t).

A. Proposed method

Computational Auditory Scene Analysis (CASA) [28] sug-
gests that a set of components whose parameters evolve in
a coherent way tend to be perceived as one source. Thus,
we propose to group the components of each source through
the Coherent Frequency Modulation (CFM) [29] and the new
proposed Coherent Amplitude Modulation (CAM) descriptors
which can be computed for a signal x as:

CFMx(t, ω) =
α̂x(t, ω)

ˆ̇
φx(t, ω)

, CAMx(t, ω) =
ˆ̇
λx(t, ω)

l̂x(t, ω)
. (28)

These descriptors measure the linear modulation factor in
frequency and in amplitude. They are assumed to be almost
identical at each instant for the components of the same source
[28]. This idea has already been investigated in several state-
of-the-art methods such as [29], [30]. Our proposed blind
source separation algorithm can be formulated as follows:

1) Computation of parameters Pi[k] from the mixture x as
Pi[k] = (li, ϕi, νi, λ̇i, φ̇i, αi)

T associated to the com-
ponent i (detected by a local maximum of |Fhx [k,m]|),
estimated at time instant t = kTs (cf. Section III-A).

2) Computation of CFMi[k] and CAMi[k] for each com-
ponent using Eq. (28).

3) At each time instant k, we compute the sets Ic′ as-
sociated to a sound source, by applying the k-means
algorithm [31] on the components i, represented by

the couple (CFMi, CAMi), for a maximal number of
clusters equal to C.

4) Modeling of each source c at each time instant
by a representing vector computed as vc[k] =(∑

i∈Ic l
2
i CFMi[k]∑

i∈Ic l
2
i

,
∑

i∈Ic l
2
i φ̇i∑

i∈Ic l
2
i

)T
.

5) If k > 1, we affect each cluster c′ to the source c through
arg min

c′
||vc′ [k]− vc[k − 1]||.

6) We synthesize each estimated source ŝc from parameters
Pi[k] for i ∈ Ic using Eq. (26).

B. Numerical experiments on real-world musical signals
We analyze an excerpt of 3 seconds of a musical mixture

sampled at Fs = 44.1 kHz, made of 2 sources (voice/guitar)
from MedleyDb [32]. Estimator (ω2) is compared to (SM12)
using a 23 ms-long Hann window with an overlap between
adjacent frames equal to ρ = 11

12 (this configuration empirically
provides the best RQF for the sinusoidal modeling for both
methods). Table II shows the source separation scores: RQF
[33], Signal-to-Interference Ratio (SIR), Signal-to-Distortion
Ratio (SDR) and Signal-to-Artifact Ratio (SAR) [34] for each
approach. The Oracle method provides the optimal clustering
results obtained by matching each component to the closest
one estimated from the reference source signals assumed
known. In the blind case, our results show a clear advantage of
method (ω2) over (SM12), particularly when using the solely
CFM descriptor, which provides the best balanced results. The
novel descriptor CAM can also be of interest since it can
lead to the best source isolation for source 2 (best SIR), but
unfortunately with poorer RQF and SDR results. Examples on
more audio excerpts from the MedleyDb dataset can be found
online at [27].

TABLE II
COMPARISON OF THE VOICE/GUITAR SEPARATION RESULTS FOR THE

MUSIC PIECE ALEXANDERROSS VELVETCURTAIN [32].

(a) (ω2)

Method RQF (dB) SIR (dB) SDR (dB) SAR (dB)
Oracle 8.70/9.66 19.02/23.21 8.08/9.24 8.50/9.44
CFM + k-means 5.88/6.02 9.77/11.14 4.58/4.84 6.58/6.32
CAM + k-means 2.47/2.62 2.57/11.70 0.23/1.49 0.84/9.96
CFM/CAM + k-means 2.99/3.16 3.65/12.16 0.63/1.93 1.20/8.36

(b) (SM12)
Method RQF (dB) SIR (dB) SDR (dB) SAR (dB)
Oracle 9.05/9.60 19.14/23.58 8.50/9.18 8.94/9.36
CFM + k-means 5.43/5.38 8.57/8.63 3.97/3.92 6.38/6.27
CAM + k-means 2.48/2.57 11.19/2.53 -0.14/1.33 0.50/9.41
CFM/CAM + k-means 2.38/2.47 11.53/2.46 -0.45/1.27 0.12/9.44

V. CONCLUSION AND FUTURE WORKS

We proposed several new estimators which were applied to
audio sinusoidal modeling and to blind source separation. Our
new proposed estimators have a significantly better accuracy
than other state-of-the-art methods when they are used for
spectral analysis in both simulations and real-world application
scenarios. Our future works will further investigate the source
separation method for a better understanding of how the pro-
posed local modulation estimator can be optimally exploited.
Moreover, the poorer results in comparaison to (ω2) provided
by higher-order estimators of (ωn) with n > 2 should be
investigated from a theoretical point of view.
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