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Contributions summary
IWe improve the performances of the DUET [1] algorithm using the synchrosqueezed STFT.
IOur recursive implementation [2] allows a real-time implemation.
I The Levenberg-Marquardt algorithm makes our method adaptive using a damping parameter µ.

The synchrosqueezed STFT

For any time t and any angular frequency ω, the STFT of a
signal x using a differentiable analysis window h is defined as :

X h(t, ω) =
∫
R

x(u)h(t − u)∗ e−jωu du (1)

= e−jωt
∫
R

x(t − u) h(u)∗ ejωu︸ ︷︷ ︸
g(u,ω)

du. (2)

The synchrosqueezed STFT can be defined by [3] :

SX h
(t,ω) =

∫
R
X h(t, ω′) ejω′(t−t0)δ(ω − ω̂x (t,ω′)) dω′ (3)

which provides a sharpened time-frequency representation (TFR)
|SX h(t, ω)|2 when an efficient local instantaneous frequency es-
timator is used such as [2] :

ω̂x(t, ω) = ω + Im
(

X Dh(t, ω)
X h(t, ω)

)
, with Dh(t) = dh

dt (t). (4)
The main advantage of synchrosqueezing over the reassignment
method [2], is that it admits a signal reconstruction formula :

x̂(t − t0) =
1

h(t0)∗
∫
R
SX h(t, ω)dω2π . (5)

(a) spectrogram |X h(t, ω)|2 (b) synchrosqueezing |SX h(t, ω)|2

The Levenberg-Marquardt synchrosqueezing

Make the synchrosqueezing adjustable and adaptive using a dam-
ping parameter µ.
This parameter could be locally matched to the signal content by
a voice activity detector or by a noise only/signal+noise binary
detector.

A new instantaneous frequency estimator is computed as :(
t̂µ(t, ω)
ω̂µ(t, ω)

)
=

(
t
ω

)
−
(
∇tRh

x (t, ω) + µI2
)−1 Rh

x (t, ω) (6)

with Rh
x (t, ω) =

(
t − t̂x(t, ω)
ω − ω̂x(t, ω)

)
(7)

∇tRh
x (t, ω) =

(
∂Rh

x
∂t (t, ω)

∂Rh
x

∂ω (t, ω)
)

(8)
I2 being the 2 × 2 identity matrix and t̂x being the time reassi-
gnment operator computed as [2] :

t̂x(t, ω) = t − Re
(

X Th(t, ω)
X h(t, ω)

)
, with Th(t) = t h(t). (9)

The Levenberg-Marquardt synchrosqueezing transform is com-
puted by replacing ω̂x in Eq. (3) by ω̂µ.

(c)µ = 5 (d)µ = 1 (e)µ = 0.3

Recursive implementation

Use a specific analysis window hk(t) = tk−1

T k(k−1)! e
−t/T U(t) (k ≥

1 being the filter order, T the time spread of the window, and
U(t) the Heaviside step function). This allows to implement the
STFT in terms of recursive filtering operations [3].
When filters gk(t, ω) = hk(t) ejωt = tk−1

T k(k−1)! e
pt U(t), with p =

jω− 1
T , are discretized under the impulse invariance assumption,

we obtain :

Gk(z , ω) = TsZ {gk(t, ω)} =

k−1∑
i=0

biz−i

1 +
k∑

i=1
aiz−i

, (10)

with bi = 1
Lk(k−1)!Bk−1,k−i−1α

i , α = epTs, L = T/Ts,
Z {f (t)} =

∑+∞
n=0 f (nTs)z−n, ai = Ak,i (−α)i , Ts being the

sampling period, Bk,i denotes the Eulerian numbers and Ak,i are
the binomial coefficients. Hence, Xk[n,m] ≈ X hk(nTs,

2πm
MTs

) ej 2πmn
M

can be computed from the sampled analyzed signal x [n] by a
standard difference equation :

Xk[n,m] =
k−1∑
i=0

bi x [n − i ]−
k∑

i=1
ai Xk[n − i ,m] (11)

where n ∈ Z and m = 0, 1, ...,M − 1 are respectively the dis-
crete time and frequency indices. The z transform of the other
specific impulse responses related to Dhk(t) and T hk(t), can
simply be expressed as functions of Gk(z , ω) at different orders
as detailed in [3]. A matlab implementation of this technique is
freely available at [4] :
https://github.com/dfourer/ASTRES_toolbox.

The DUET blind source separation method

Mixture model :

x1(t) =
I∑

i=1
si(t)

x2(t) =
I∑

i=1
aisi(t − τi) (12)

Mixing parameters estimation :
When a non-overlapping source is active at coordinates (t, ω), and when X1(t, ω) 6= 0
(resp. X2(t, ω) 6= 0), we have :

âi(t, ω) =
∣∣∣∣X h

2 (t, ω)
X h
1 (t, ω)

∣∣∣∣ (13)

τ̂i(t, ω) = −
1
ω
arg
(

X h
2 (t, ω)

X h
1 (t, ω)

)
, ∀ω 6= 0. (14)

An histogram H(a, τ ) is thus computed from whole time-frequency plane and the source
parameters can be deduced from detected peaks.
Sources estimation :
Each time-frequency coordinate allocated to the histogram H(a, τ ) can be associated to
the prominent source using its corresponding mixing parameters (âk, τ̂k) such as :

J(t, ω) = arg min
k

(∣∣âk e−jωτ̂kX h
1 (t, ω)− X h

2 (t, ω)
∣∣

1 + â2k

)
(15)

which allows the computation of the binary separation mask Mi of each source computed
as :

Mi(t, ω) =
{
1 if J(t, ω) = i
0 otherwise

. (16)

Finally, the TFR of each source is simply recovered by :

Ŝi(t, ω) = Mi
X h
1 (t, ω) + âk ejωτ̂kX h

2 (t, ω)
1 + â2k

(17)

for which the waveform is reconstructed using the corresponding synthesis formula (i.e. Eq.
(5) when the synchrosqueezed STFT is used).

Numerical results

Effect on W-disjoint orthogonality :

Two sources s1, s2 are said W-disjoint orthogonal if their
STFTs verify [1] : Sh

1 (t, ω)Sh
2 (t, ω) = 0.

For a given separation mask Mi , the W-disjoint orthogo-
nality of a source i present in a mixture can be measured
by [1] : Di(Mi) = :∫∫

R2
|Mi (t,ω)Sh

i (t,ω)|2 dtdω −
∫∫

R2
|Mi (t,ω)Yi (t,ω)|2 dtdω∫∫

R2
|Sh

i (t,ω)|2 dtdω

(18)
where Yi(t, ω) =

∑
∀j 6=i Sh

j (t, ω) denotes the sum of all
the other sources present in the analyzed mixture.
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using DUET separation mask (best orthogonality: µ=0.060)
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Approximated W-disjoint orthogonality
using different TFRs, as a function of µ.
Results are averaged over 10 mixtures of 4

sources from the Bach10 dataset.
Experiment description :
We use the Bach10 research dataset freely available at : http://music.cs.northwestern.edu/data/
Bach10.html , which contains 10 musical pieces made of 4 sources (pitched instruments). We generate
random mixtures through Eq. (12). Comparative results assume that mixing parameters are known and
identical for all the methods, in order to focus on the separation capability of each TFR.
Results :
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(f)µ = 0.001
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(g)OPTIMAL value µ = 0.06
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(h)µ = 10

Comparative source separation results measured in terms of Bss Eval [5], provided by the proposed methods
and classical STFT applied on the Bach10 dataset. The results are obtained with different values of the
damping parameter µ used by the recursive Levenberg-Marquardt synchrosqueezed STFT (other TFRs
are not affected by µ).

Conclusions and future works

IWe have proposed a new practical application to blind audio source separation, of our recently
introduced time-frequency computation methods [3][4].

IOur methods could also be used to improve the results of any blind source separation methods
based on time-frequency masking.

I Future works will investigate more complicated configuration such as convolutive mixture.

Bibliography
I [1] A. Jourjine, S. Rickard, and O. Yilmaz, “Blind separation of disjoint orthogonal signals : Demixing N sources from 2 mixtures,” in Proc. IEEE ICASSP,

Istanbul, Turkey, June 2000, vol. 5, pp. 2985–2988.
I [2] F. Auger and P. Flandrin, “Improving the readability of time-frequency and time-scale representations by the reassignment method’ IEEE Trans. Signal

Process., vol.43, no. 5, pp. 1068–1089, May 1995.
I [3] D. Fourer, F. Auger, and P. Flandrin, “Recursive versions of the Levenberg-Marquardt reassigned spectrogram and of the synchrosqueezed STFT,” in Proc.

IEEE ICASSP, Shanghai, China, May 2016, pp. 4880–4884.
I [4] D. Fourer, J. Harmouche, J. Schmitt, T. Oberlin, S. Meignen, F. Auger, and P. Flandrin, “The ASTRES toolbox for mode extraction of non-stationary

multicomponent signals”, in Proc. EUSIPCO, Kos island, Greece, Aug. 2017, pp. 1170–1174. https://github.com/dfourer/ASTRES_toolbox
I [5] E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement in blind audio source separation,” IEEE Transactions on Audio, Speech, and Language

Processing (TASLP), vol. 14, no. 4, pp. 1462–1469, Jul. 2006.

This work was supported by the European Union’s Horizon 2020 research and innovation program
under grant agreement no 688122, as part of the ABC-DJ project (http://www.abcdj.eu)
and the ANR ASTRES Project (ANR-13-BS03-0002-01). Artist-to-Business-to-Business-to-Consumer

Audio Branding System

https://github.com/dfourer/ASTRES_toolbox
http://music.cs.northwestern.edu/data/Bach10.html
http://music.cs.northwestern.edu/data/Bach10.html
https://github.com/dfourer/ASTRES_toolbox
http://www.abcdj.eu

