

HIGH-LEVEL CHORD FEATURES EXTRACTED FROM AUDIO CAN PREDICT PERCEIVED **MUSICAL EXPRESSION**

Jochen Steffens¹, Steffen Lepa¹, Martin Herzog¹, Andreas Schönrock¹, Geoffroy Peters², Hauke Egermann³

¹Technische Universität Berlin, Audio Communication Group, Berlin, Germany, ²UMR STMS (IRCAM-CNRS-UPMC), Paris, France, ³York Music Psychology Group, University of York

berlin

INTRODUCTION

- Music composers use harmonic progressions to express and induce particular emotional responses and to convey meanings.
- \rightarrow e.g. association between minor chord and sadness
- Research in musicology: influence of harmonic progression on perceived emotion and meaning [1] Prior research in MIR: use chord information to predict genre membership [2] or to identify cover songs [3] • Aims of present work: • Bridging the gap between both disciplines • Predicting perceived musical expression through automatically extracted chord features

RESULTS

Easy-Going:

- Stepwise regression: three significant chord features (all p < .01):
 - chords_minor ($\beta = .147$)
 - chords_func (β = .122)
 - chords_unique (β = .102)

 \rightarrow ABC_DJ project

DEVELOPMENT OF NOVEL CHORD FEATURES

Basis: Chord progression \rightarrow IRCAMchord [4] Key/mode estimation \rightarrow IRCAMkeymode [5]

Number of chords in a certain segment:

- *chords_total*: Total number of chords divided by the track duration • (in seconds)
- *chords_unique:* number of unique chords divided by the track \bullet duration
- *chords_func*: number of functional chords divided by the total \bullet number of chords (\rightarrow Harmonic complexity)
- *chords_until_tonic*: average number of chord changes until the next tonic occurs (\rightarrow Harmonic tension)
- chords_minor / chords_major. number of minor and major chords, \bullet divided by the total number of chords

- GLM: Two significant interaction effects:
 - chords_func X Folk (β = -.552, p <. 05)
 - chords_unique X Jazz (β = .373, p < .05)
- R^{2} (variance explained by whole model) = 32.8% (R^{2}_{adi} = 26.1%)
- η^2 (variance explained by chord features) = 4.6%
- η^2 (variance explained by interaction effects) = 0.9%

Joyful:

- Stepwise regression: three significant chord features (all p < .01):
 - chords_total ($\beta = 0.208$)
 - chords_unique ($\beta = -0.166$)
 - chords_minor ($\beta = -0.156$)
- GLM: No significant interaction effects \bullet
- R^{2} (variance explained by whole model) = 23.7% (R^{2}_{adi} = 22.0%)
- η^2 (variance explained by chord features) = 6.1%

Authentic:

- Stepwise regression: one significant chord feature (p < .01): • chords_unique ($\beta = 0.193$)
- GLM: No significant interaction effects
- R^{2} (variance explained by whole model) = 38.1% (R^{2}_{adi} = 36.9%)
- η^2 (variance explained by *chords_unique*) = 3.5%

Progressive:

• Stepwise regression: one significant chord feature (p < .01):

Number of specific cadences and turnarounds (selection):

- authenticad: number of authentic cadences (i.e. V-I chord progressions)
- *turnaround_blues:* number of basic Blues chord progressions (|-|V-|-V-|V-|).

METHOD

 \rightarrow Validation of novel features by means of data from two online experiments

Sample:

10.047 participants (49.9% female) from three different countries, ulletage cohorts, educational backgrounds (country-wise crossedquotas)

Design:

- Rating of four (study part 1) or six (study part 2) randomly assigned 30-seconds music excerpts
- Stimuli: pool of 549 music titles (10 different genres and 61 styles) \bullet
- Measure: General Music Branding Inventory (GMBI, [6]) \rightarrow Perceived musical expression in branding contexts (four orth. factors: *Easy-going*, *Joyful*, *Authentic*, and *Progressive*)

- chords_unique ($\beta = -0.132$)
- chords_minor ($\beta = 0.086$)
- GLM: No significant interaction effects
- R^{2} (variance explained by whole model) = 50.4% (R^{2}_{adi} = 49.4%)
- η^2 (variance explained by chord features) = 1.7%

DISCUSSION

- Significant contribution of chord features in predicting perceived musical expression
- Additional explanatory gain (4.1% on average) above genre information
- \rightarrow Valuable additional set of predictors for diverse MIR scenarios
- Most important features: *chords_unique*, *chords_total*, *chords_minor*
- Almost no interaction effects between chord features and genre
- \rightarrow Effects of chord progressions on perceived musical expression are stable across different genres
- Future work: Development of novel features detecting bass notes and additional notes (e.g. sixths, ninths)

ACKNOWLEDGEMENTS

This research has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement n° 688122

Analyses:

- Estimation of four linear regression models ' lacksquare(IV: Chord features, DV: GMBI factor scores averaged across) participants, control variable: Genre tagged by experts)
- Procedure:
 - Initial stepwise regressions
 - 1. Entering dummy-coded genre variables as a whole block
 - 2. Stepwise entering of the chord features
 - Estimation of final general linear models (GLM) consisting of significant chord features and genre tags.
 - \rightarrow Additional testing of *chord features X genre* interaction effects

REFERENCES

- L. Meyer, *Emotion and Meaning in Music*. Chicago: University Press, 956. [1]
- A. Anglade, R. Ramirez, and S. Dixon, "Genre classification using harmony rules [2] induced from automatic chord transcriptions," in Proc. of ISMIR (International Society for Music Information Retrieval Conference, Kobe, Japan, 2009, pp. 669–674.
- J. Serra, E. Gómez, and P. Herrera, "Audio Cover Song Identification and Similarity: [3] Background, Approaches, Evaluation, and Beyond," Advances in Music Information *Retrieval*, vol. 274, pp. 307–332, 2010.
- H. Papadopoulos and G. Peeters, "Joint Estimation of Chords and Downbeats From an [4] Audio Signal," IEEE Trans. Audio Speech Lang. Process., vol. 19, no. 1, pp. 138–152, 2011.
- G. Peeters, "Chroma-based estimation of musical key from audio-signal analysis," in [5] Proc. of ISMIR, Victoria, BC, Canada, 2006.
- H. Egermann, S. Lepa, A. Schönrock, M. Herzog, and J. Steffens, "Development and [6] Evaluation of a General Attribute Inventory for Music in Branding," in Proc. of the 25th Anniversary Conference of the European Society for the Cognitive Sciences of Music (ESCOM), Ghent, Belgium, 2017.