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ABSTRACT

In this paper, we propose a new representation as input of a Convolutional Neural Network with the goal of
estimating music structure boundaries. For this task, previous works used a network performing the late-fusion
of a Mel-scaled log-magnitude spectrogram and a self-similarity-lag-matrix. We propose here to use the square-
sub-matrices centered on the main diagonals of several self-similarity-matrices, each one representing a different
audio descriptors. We propose to combine them using the depth of the input layer. We show that this representation
improves the results over the use of the self-similarity-lag-matrix. We also show that using the depth of the input
layer provide a convenient way for early fusion of audio representations.

1 Introduction

Music structure discovery (MSD) is a recent research
field, which aims at estimating automatically the tem-
poral structure of a music track by analyzing the char-
acteristics of its audio signal over time. Such structure
can be used for interactive browsing within a track [1],
automatic summary generation [2], automatic DJ [3]
or computational musicology.

In MSD, the temporal structure of a music track is
represented as a succession of segments. Such seg-
ments can correspond to - homogeneous audio content
(also named “states" [4]), - repeated audio content (also
named “sequences" when they are non-homogeneous
[4]) or - non-homogeneous non-repeated content (in
this case they are only defined as the temporal segment
between two novelty boundaries). In pop music, such

segments can correspond to the verse, chorus or bridge
parts of a song. In a MSD representation, each seg-
ment is characterized by its temporal boundaries and a
label indicating its similarity with the other segments.
In the present work, we only consider the problem of
estimating the boundaries.

Defining what is music structure is still a research topic.
Several proposals have been made so far to define it
(see for example the works of [5], [6] and [7]), each
leading to a different music structure annotation system.
In this paper, we will rely on the definition underlying
the annotations made for the SALAMI dataset.

1.1 Related works

Research related to the automatic estimation of mu-
sic structure started in 1999 with the work of Foote
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[8]. Until the accessibility of large annotated datasets,
the methods used to estimate the music structure were
mostly based on unsupervised learning algorithms: —
clustering [9] or hidden Markov model [2] applied to
audio signal features, — dynamic time warping [10],
non-negative matrix factorization [11] or singular value
decomposition [12] applied to a self-similarity matrix.

Recently, large datasets of music annotated in struc-
ture have appeared (such as RWC [13], INRIA [14],
SALAMI [7]) allowing the use of supervised learning
algorithms. The first supervised training approach [15]
was an adaptation of Fisher’s linear discriminant analy-
sis used to improve the results of a previous clustering.

Convolutional neural network. Following what hap-
pened in other domains (such as text or image recogni-
tion), neural networks with many hidden layers, a.k.a.
deep learning, have allowed to largely increase the
recognition results in various music audio recognition
tasks (onset, beat, downbeat or music structure bound-
aries estimation). Various types of units were proposed
to apply a network to an audio signal representation.
[16] or [17] first proposed to use Bi-directional Long-
Short-Term-Memory (BLSTM) units. [18] or [19] later
proposed to use the more tractable Convolutional units
[20] with even better recognition results. In this work,
we will rely on Convolutional units. In this case, the
network is named a Convolutional Neural Network
(CNN or ConvNet).

Input representation. The input of such a ConvNet
is a representation of the audio signal. In previous
works, spectrogram, constant-Q-transform and Mel-
scaled Log-magnitude Spectrograms (MLS) have been
proposed. While these representations seems adequate
to represent the short-term properties of an audio signal
(hence short-term variations typical of onsets or beats),
the boundaries defining music structure may need a
wider observation context. For this reason, [19] have
proposed to use as input the self-similarity-lag-matrix
[21], i.e. a self-similarity matrix expressed in (lag,
time) rather than (time, time).

Our proposal. In this work, we propose a new repre-
sentation to be used as input to a ConvNet.

1. First, we propose to use as input the succession
of square-sub-matrices centered on the main di-
agonal of a Self-Similarity-Matrix (SSM). In the
case of homogeneous segments, this representa-
tion provides much sharper edges at the beginning

and ending of segments than the lag-matrix. This
representation was already used by Foote [22]
to estimate music structure boundaries (by con-
volving it with a single predefined checker-board
kernel) or by Kaiser et al. [23] (using several pre-
defined kernels). We believe that the ConvNet can
find more appropriate kernels for this task.

2. Second, we propose to use the depth of the in-
put layer of a ConvNet to represent various view-
points on the audio content. Indeed, when com-
puting a SSM, the choice of the signal represen-
tation plays a crucial role. Using Mel-Frequency-
Cepstral-Coefficient (MFCC) or chroma as audio
signal representation will lead to two different
SSMs highlighting possibly two different tempo-
ral structures. We therefore propose to combine
several SSMs using the depth of the input layer.
Such depth is usually used in computer vision to
represent the R, G, B colors of an image.

1.2 Organization of the paper

The paper is organized as followed. In part 2, we ex-
plain the use of convolutional neural network for music
structure boundary estimation, the architecture of the
network, the peak-picking algorithm and the training
process. In part 3, we present our new input representa-
tion and the way we use the input depth to represent it.
In part 4, we then evaluate our proposal against previ-
ously published results. We finally discuss our results
and present directions for future works.

2 Estimating musical boundaries using
Convolutional neural networks

Convolutional neural network. A ConvNet is a spe-
cific type of feed-forward neural network in which units
share their parameters (“parameter sharing") and are lo-
cally connected with each other (“local connectivity").
The connection weights can therefore be considered
as a filter (“local connectivity") convolved (“parameter
sharing") with the input representations. Such filter is
often named a receptive field. At each layer, the output
values of the previous layers are convolved with a set
of such filters and passed through a non-linearity or ac-
tivation function (such as a hyperbolic tangent denoted
by tanh) to create the layer output values. To make the
layer invariant by translations within the dimensions
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of the input, a pooling operation can be applied after
the non-linearity. A popular choice for this is the max-
pooling, which only keeps the maximum value over
a fixed area. This new representation is then used as
input for the following layer.

ConvNet have been originally designed for computer
vision. The input is then a two dimensional repre-
sentation. In this case, the invariant feature detection
performed by a layer is in fact similar to some function
in the visual cortex. Ullrich et. al. [18] were the first
to propose their use for music structure boundary esti-
mation. Their system is the current state-of-the-art in
terms of results.

Input representations. While ConvNet can be applied
directly to a 1D signal (such as the audio waveform
[24]), it is usual to transform the 1D signal in a 2D
representation to allow to apply a convolution along
the two dimensions. For this 2D representation, Ull-
rich et al. [18] have proposed the Mel-scaled Log-
magnitude Spectrograms (MLS). An audio track is
then represented as a succession of images taken from
the MLS. Each image represent a 16 s duration seg-
ment by 80 Mel bands. Each image has an associate
label ("boundary" or "non-boundary"), which indicates
whether or not a boundary exists at the center frame of
the segment. Later, Grill et al. [19] have proposed to
add another 2D representation: the Self-Similarity-Lag-
Matrix (SSLM), i.e. a self-similarity matrix expressed
in (lag, time) rather than (time, time).

Network architecture. The network architecture used
in [18] and [19] is the following: two convolutional
layers followed by two fully connected layers, the last
layer being made of a single neuron with a sigmoid
activation, giving an output between 0 and 1. This out-
put represents the probability that the center frame of
the segment is a boundary. While [18] only apply this
architecture to MLS, [19] apply it to both MLS and
SSLM. Although the use of the sole SSLM does not
improve results, its combination with the MLS proves
to be the best. To combine the MLS and SSLM repre-
sentations, two models are compared: 1) the average of
the outputs of two independently trained ConvNets, 2)
merging the two networks in a new convolutional layer.
This second model performs the best and therefore will
be the one used in the following.

2.1 Training

As for fully-connected neural networks, ConvNet are
trained using the back-propagation algorithm. In this,

the parameters of the network (the weights or filters of
each layer) are iteratively updated based on the gradient
of the prediction error w.r.t. these parameters.

Loss function. The goal of the training is to minimize
the prediction error also named loss function. In [18]
and [19], this loss-function is defined by the binary-
cross entropy between the ground truth we are trying to
predict (y) and the prediction of it based on the output
of the network (ŷ):

BinaryCrossEntropy(y, ŷ) = y ln(ŷ)+(1−y) ln(1− ŷ)

For a binary classification, the ground truth y has to be
in {0,1}. To match this binary classification, we will
pass through the network an MLS or an SSLM excerpt,
and considered that a segment is labeled 1 if the middle
frame is a ground truth boundary, 0 if not.

Back propagation algorithm. For a given input, we
compute successively the activations of all layers until
the output ŷ. We then compute the loss function given
this prediction ŷ and the ground-truth output y. This
is the forward pass. We then compute the gradient
of the loss w.r.t. all the parameters of the network.
The goal is to modify these parameters in the opposite
direction of these gradients in order to decrease the
loss to a good local minimum (hopefully to a global
minimum). To compute these gradients, we use the
chain rule: for a given layer, the gradient of the loss
function is expressed recursively in function of the
gradient of the layer above. This is the backward pass:
we propagate the gradient of the loss backward in the
network.

Many different algorithms have been proposed to up-
date the gradient each allowing better convergence to
a local minimum of the loss function. The momentum
algorithm [25], used in [18] and [19], keeps track of the
previous updates in order to optimize the convergence
of highly non-convex loss functions. The more recent
algorithm AdaMax [26], that we will use here, is based
on the estimation of the first moment and the infinity
norm of the past and current gradients.

In the simplest form (Batch Gradient Descent), ev-
ery input of the training set is passed trough this for-
ward/backward propagation. The average (over all in-
puts) gradients are computed and the parameters of
the network updated accordingly. In this case, the con-
vergence can be very slow. Passing all inputs of the
training set to the network is named an epoch. In the
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Fig. 1: Computation of the three input representations.

opposite, in Stochastic Gradient Descent (SGD), the
update is performed after processing each input. In this
case, the estimation of the gradient is very poor. In
the middle, in mini-batch gradient descent, updates of
the parameters are performed after processing a fixed
number (named batch) of inputs. In the following, we
will use a mini-batch of 128 inputs.

Stopping criteria (validation set). To stop the iter-
ative update process, several strategies are possible.
Apart from defining a fixed number of iterations, the
most common is to use a separate dataset (named vali-
dation set) and periodically monitor the generalization
performance of the network on it. When the error on the
validation set stop decreasing, the training is stopped.

To further improve the results, one can use a bagging of
several networks. In this, several networks are trained
independently using the same input data but different
initializations. The final output is then the averaging
of the outputs of the different trained networks. In the
following all results are presented using a bagging over
5 networks.

2.2 Using the network to estimate music
structure boundaries

Given that a music track is represented as a succession
of 16 s. segments over time and that each segment
passed through the network gives an output value (the
sigmoid activation) in [0,1], the whole track can be
represented as a temporal curve with values in [0,1]
representing the probability of a boundary.

Direct threshold. In this method, we simply apply
a threshold on the curve to decide on the boundaries.
This threshold has been trained (on the validation set).

Peak-picking. In order to take into account past and
future context of the segment within the music track,

[18] proposes a peak-picking approach. A peak is de-
fined as a value which is the maximum in the temporal
window ± 6s. A strength is associated to this peak
defined as its value minus the average activation in the
past 12 seconds and the forward 6 seconds. A threshold
is then applied on the remaining peaks. This threshold
has been trained (on the validation set).

3 Proposed method

Input representation. In this work, we propose a new
representation to be used as input to a ConvNet. We
propose to use the succession of square-sub-matrices
centered on the main diagonal of a Self-Similarity-
Matrix (SSM) as input. More precisely, if we denote by
SSM(i, i′) ∀i, i′ ∈ [0, I− 1] the SSM representing the
similarity between pairs of times i and i′, we propose to
use the set of square-sub-matrices subSSMi defined by
subSSMi( j, j′) = S( j+(i−F/2), j′+(i−F/2)) with
j, j′ ∈ [0,F−1], i ∈ [F/2, I−F/2] and where F is the
size of the sub-matrix (see Figure 2 for illustration).

subSSMi

0
0

F

Fi

I � 1

I � 1

i

Fig. 2: subSSMi input representation for the ConvNet.

In the case of homogeneous segments, this representa-
tion provides much sharper edges at the beginning and
ending of segments than the lag-matrix used by [19].
This representation was already used to estimate music
structure boundaries: by Foote [22] (by convolving it
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with a single predefined checker-board kernel) or by
Kaiser et al. [23] (using several predefined kernels).
We believe that the ConvNet can find more appropriate
kernels for this task.

Using the depth of the input layer. When comput-
ing a SSM, the choice of the audio descriptors used
to represent the audio signal content plays a crucial
role. Using different audio descriptors will lead to dif-
ferent SSMs highlighting possibly different temporal
structure and therefore different boundaries, such as
the structure underlying timbre changes or the one un-
derlying harmonic pattern repetitions. Here, we chose
to use two classical audio descriptors, the MFCC (for
Mel-frequency Cepstral Coefficients), which describes
the timbre, and the chroma (also named Pitch-Class-
Profile), which describes the harmonic content of the
track. We therefore represent an audio track by two
different SSMs.

To combine the information provided by the two SSMs
late fusion of independent networks can be used (for
example by averaging the output of independent net-
works). However, we believe that performing early
fusion will help preserving the temporal relationship
between the two representations of our audio signal. To
achieve this early fusion, we propose to use the depth
of the input layer of the convolutional layer (see Figure
3). In computer vision, this depth is used to represent
the R, G, B colors of an image. Here, we combine the
two SSMs (computed with the MFCC and the Chroma)
to create an input tensor of depth 2.

The computation of the three input representations is
detailed in Figure 1 and explained below.

Computation of the MLS. The MLS are computed as
in [19]. A Short-Time-Fourier-Transform (STFT) is
computed using a Hanning window of 46 ms. duration
and 50% overlap. The magnitude spectrogram is then
converted to 80 Mel bands and the resulting amplitudes
logarithmically-scaled. They are then pooled over time
by a factor 6 using a maximum operator. We denote
it by MLS(i,b ∈ [1,80]). The hop size (difference be-
tween successive time frames i) is 138 ms.

Computation of sssuuubbbSSSSSSMMMm f cc
iii . The MLS are com-

puted as above but only pooled over time by a factor 2
using a maximum operator. A DCT is then performed
over the resulting MLS (omitting the 0-th element) [27].
The resulting MFCC vectors are stacked by 2 to create
a 160-dimensions vector. The SSM is then computed

Conv
16 * (F=8 x B=6)

FC 1 unit

Conv
32 * (6x3) Pool

(F=6xF=6)
Pool

(F=3 x B=6)

Conv
16 * (F=8 x F=8 x D=2)

MLS (F=115 x B=80)

Output

FC 128 units

SSM (F=115 x F=115)
SSM (F=115 x F=115)

Inputs

…

Late Fusion

Early fusion

Fig. 3: Architecture for the proposed method for mu-
sic structure bloundary estimation, using MLS,
subSSMm f cc and subSSMchroma.

from the MFCC using a cosine distance. To reduce
the dimensionality, the SSM is pooled by a 3 factor in
both time dimensions using a maximum operator. We
denote it by SSMm f cc(i, i′). We derive the set of square
submatrices subSSMm f cc

i ( j, j′) from it. The hop size is
also 138 ms.

Computation of sssuuubbbSSSSSSMMMchroma
iii . We first compute a

Short-Time-Fourier-Transform (STFT) using a Han-
ning window of 46 ms. duration with a 50% overlap.
The STFT is then pooled over time by a factor 2 using
a maximum operator. A set of 12 chroma filters [28] is
then applied. The resulting chroma vectors are stacked
by 2 to create 24-dimensions vectors. The SSM is then
computed from the chroma using a cosine distance. To
reduce the dimensionality, the SSM is pooled by a 3
factor in both time dimensions using a maximum op-
erator. We denote it by SSMchroma(i, i′). We derive the
set of square sub-matrices subSSMchroma

i ( j, j′) from it.
The hop size is also 138 ms.

In the case of SSM, as in [19], we used circular padding
to add the necessary context for estimating boundaries
at the beginning and ending of the track.

Network Architecture. The architecture of our net-
work is close to one proposed by [19] but adapted to
our proposals. It is illustrated in Figure 3. As in [19],
the network operates a late-fusion of two sub-networks
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(one representing MLS, the other subSSM) using a con-
volutional layer. This convolutional layer is followed
by two fully-connected layers: one with 128 tanh hid-
den units and one with a sigmoid unit that constitutes
our boundary probability.

The left sub-network operates over segments taken
over the MLS of size F = 115 frames (representing
a duration of 15.87 s.) and B = 80 frequency bands
(F=115 × B=80). The convolutional layer contains 16
receptive fields of size (F=8× B=6) followed by a tanh
activation and a max-pooling of size (F=3 × B=6).

The right sub-network is different than the ones of
[19]. It operates over 2-dimensional tensors repre-
senting the two square sub-matrices subSSMm f cc

i and
subSSMchroma

i . Its size is (F=115 × F=115 × D=2).
The convolutional layer also contains 16 receptive
fields but since the subSSMi are square, the receptive
fields are also square. There size is (F=8 × F=8 ×
D=2). They are followed by a tanh activation and a
max-pooling of size (F=6 × B=6).

We used the binary cross entropy as our loss function
and we trained the network using the AdaMax algo-
rithm ([26]) with mini batch of size 128. To avoid
over-fitting, we applied dropout to both fully-connected
layers with a 50% rate.

To estimate the final boundaries, we will compare the
two approaches mentioned above: direct threshold and
peak-picking (as proposed by [18]). To measure the
impact of the use of the depth of the input layer, we
will also train models using only subSSMm f cc

i and using
only subSSMchroma

i .

4 Evaluation

4.1 Dataset

To evaluate our proposal and to be able to compare our
results to current state-of-the-art algorithms[19], we
used the SALAMI dataset [7] for training, validating
and testing. SALAMI contains 1048 music tracks of
various music genres (including popular, classical, jazz
or world music) annotated in music structure at differ-
ent temporal scales and by two different annotators. As
[19] did, we will only used the annotation of annotator
1 at the largest temporal scale.

It should be noted that we didn’t have access to all the
audio tracks of the dataset but only to 732 of them. Also

it should be mentioned that [19] used a second private
dataset for training their system. Therefore, in order to
be able to compare our system to the one proposed by
[19], we re-implemented [19] and ran it on our dataset.

We split our 732 audio tracks into 400 tracks for
training, 100 for validation and 232 for testing. The
splitting has been to ensure that the same artist does
not appear both in the training and testing set. The split
into training, validation test, and testing is available at
https://github.com/aliceCohenHadria/
SALAMI-split-for-AES-article.

4.2 Performance measures

As in previous works, we evaluate our results using the
F-measure.

Since the final step of the boundaries estimation algo-
rithm involves the choice of a threshold (either in the
“direct threshold" or in the “peak-picking" method), we
also compute a performance measure which is indepen-
dent of the choice of this threshold: the Area Under
the ROC Curve (AUC). For a given choice of a thresh-
old, one can compute the True Positive (TP) rate and
the False Positive (FP) rate. This can be done for all
possible choices of the threshold. The ROC curve then
represents the values of the TP rate as a function of the
FP rate. The AUC is then simply the area under this
curve. A value of the AUC close to 1 indicates a system,
which does not depend on a specific choice of a thresh-
old (a robust system). In our experiments, in all cases
(“direct threshold" or in the “peak-picking" method),
the AUC is computed using the network output value.

The F-measure and AUC are computed using two toler-
ance windows: ±0.5 s. and ±3 s.

4.3 Results

Results are presented in Table 1 in terms of F-measure,
Precision, Recall and AUC at ±0.5 s. and ±3 s.

In this, we compare the results obtained using the late-
fusion (using a convolutional layer) of a sub-network
using MLS and a sub-network using 1 subSSMm f cc,
2 subSSMchroma and 3 using the depth of the input
layer to combine subSSMm f cc and subSSMchroma. In
all cases, we use the peak-picking proposed by [18]
for the final boundary estimation. 3’ is the same as 3
but using the direct threshold method instead of the
peak-picking method. In order to be able to compare
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Table 1: Results of boundary estimation in terms of F-meas., Precision, Recall and AUC at 0.5 s. and 3 s. tolerance.

Model ±0.5 s. tolerance ±3 s. tolerance
F-m. (std) Prec. Rec. AUC F-m. (std) Prec. Rec. AUC

1 MLS + subSSMm f cc 0.273 (0.132) 0.279 0.30 0.810 0.551 (0.158) 0.563 0.602 0.946
2 MLS + subSSMchroma 0.270 (0.135) 0.43 0.215 0.800 0.540 (0.153) 0.604 0.555 0.922
3 MLS + Depth(subSSMm f cc,subSSMchroma) 0.291 (0.120) 0.470 0.225 0.792 0.629 (0.164) 0.755 0.624 0.930
3’ MLS + Depth(subSSMm f cc,subSSMchroma) 0.211 (0.08) 0.128 0.699 0.792 0.618 (0.156) 0.502 0.878 0.930
4 [19] re-implemented: MLS+SSLM(MFCC) 0.246 (0.112) 0.291 0.239 0.774 0.580 (0.150) 0.666 0.568 0.927
5 [19] published: MLS+SSLM(MFCC) 0.523 0.646 0.484

Fig. 4: Boxplot of the F-measure at ± 3 s. of all the
models

our results to the ones of [19] (since we do not have the
same dataset and since [19] did not publish their results
at ±3 s.) we re-implemented their most successful
model (the fusion of the MLS and SSLM through a
convolutional layer) and apply it (training and testing)
to our dataset. Results are presented in row 4 . We
also indicate the results published in [19] in row 5 .

In Figure 4, we provide the corresponding boxplots1

representation of the F-measure at ± 3s. From left to
right: 1 , 2 , 3 , 3’ and 4 .

4.4 Discussion

We first see that the size of the dataset plays a crucial
role: our re-implementation of [19] (row 4 ) achieves

1Each boxplot show the minimum, first quartile, median, third
quartile, and maximum for one model through all the tracks in the
test set.

much lower results (0.246 < 0.523) than the results
published by the author (row 5 ).

We see that using the self-similarity-matrix expressed
in time 1 rather than in Lag (row 4 ) provides a small
improvement at ± 0.5 s. in terms of F-measure (0.273
> 0.246) and AUC (0.810 > 0.774). At ± 3 s., this
is only the case for the AUC (0.946 > 0.927) but not
for the F-measure. We see that using the depth of the
input layer to combine the two SSMs (row 3 ) allows
to increase the F-measure at ± 0.5 s. and ± 3 s. This is
due to a large increase of the Precision. It seems that
using the two SSMs simultaneously allows reducing
false detection. However, the AUC remains better using
only one SSM of MFCC (row 1 ).

We see that replacing the peak-picking algorithm (row
3 ) by a direct threshold on the network output (row
3’ ) decrease the results: a threshold on the output
leads to a F-measure of 0.618 (resp.0.211), compared
to 0.629 with the pick peaking (resp. 0.29). However,
according to the boxplot representation (Figure 4), the
variance is reduced.

Finally, considering the F-measure and our version of
the SALAMI dataset, we see that our proposed model
(row 3 ) performed the best in all cases and exceeds
our re-implementation of the state-of-the-art system of
[19].

5 Conclusion

In this paper we have proposed a new representation to
be used as input to a Convolutional Neural Network in
the goal of estimating music structure boundaries. We
have proposed to use the square-sub-matrices centered
on the main diagonal of a self-similarity matrix. In the
case of homogeneous segments, this representation pro-
vides much sharper edges at the beginning and ending
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of segments than the previously used Lag-Matrix. In
order to represent various viewpoints on the content of
a music track, we proposed to use square-sub-matrices
extracted using two different audio features represent-
ing timbre (MFCCs) and harmony (chromas). We have
proposed to combine them in a early fusion way using
the depth of the input layers of a ConvNet. This fusion
allows preserving the temporal relationship between
the two representations. During a large experiment
using the SALAMI dataset, we showed that the pro-
posed representation allows improving music structure
boundary estimation over our re-implementation of the
state-of-the-art approach of Grill et al.
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