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ABSTRACT

In this paper we propose two novel scale and shift-invariant
time-frequency representations of the audio content. Scale-
invariance is a desired property to describe the rhythm of an
audio signal as it will allow to obtain the same representa-
tions for same rhythms played at different tempi. This prop-
erty can be achieved by expressing the time-axis in log-scale,
for example using the Scale Transform (ST). Since the fre-
quency locations of the audio content are also important, we
previously extended the ST to the Modulation Scale Spec-
trum (MSS). However, this MSS does not allow to represent
the inter-relationship between the audio content existing in
various frequency bands. To solve this issue, we propose
here two novel representations. The first one is based on the
2D Scale Transform, the second on statistics (inspired by the
auditory experiments of McDermott) that represent the inter-
relationship between the various frequency bands. We apply
both representations to a task of rhythm class recognition and
demonstrates their benefits. We show that the introduction of
auditory statistics allows a large increase of the recognition
results.

Index Terms— 2D-Fourier, 2D-Scale, Fourier-Mellin
Transform, auditory statistics, rhythm description

1. INTRODUCTION

The two cornerstones of automatic music description based
on audio analysis are: – extracting meaningful information
from the audio signal (audio descriptor extraction) and – per-
forming an efficient mapping between this information and
the concept to be estimated (classification algorithm)1.

In this paper, we propose two novel audio descriptors
which aim at representing the time and frequency energy pat-
tern of an audio signal independently of its scale (in the case
of music the scale is the tempo). Those are based on the Scale
Transform and designed specifically to capture the rhythm

This work was funded by the French PIA Bee Music project and the
H2020-ICT-2015 ABC DJ project (688122).

1While deep learning methods tend to bring both together, carefully de-
signed audio descriptors are still necessary when a very large amount of train-
ing data is not accessible.

characteristics of a music track. Indeed, rhythm, along har-
mony (melody) and timbre (orchestration) are the three most
important perspectives to describe the music content.

The rhythm of a track is usually described by a pattern
played at a specific tempo. The pattern includes the character-
istics of the meter, the specific accentuation, micro-timing, ...
We therefore need a representation which is independent of
the tempo (scale-invariant) and of the position of the begin-
ning of the pattern (shift-invariant). There has been several
proposals related to shift and scale invariant representation of
an audio signal: log-time axis [1], the Scale Transform [2] or
our own proposal of Modulation Scale Spectrum (MSS) [3].

However none of them allow taking into account how the
different rhythmic events relate to each other in the frequency
domain. As an example, let’s consider the following pattern
[x.o.x.o.], where ‘x’ is a kick, ‘o’ a hi-hat, ‘.’ a rest and ‘xo’ a
kick and a hi-hat played simultaneously. In [1, 2], since there
is no frequency representation, there will be no difference be-
tween [x.o.x.o.] and [x.x.x.x.] or [o.o.o.o.]. In [3], each
different frequency has its own representation but there are
no inter-relationship modeled between them. Therefore there
will be no difference of representation between [x.o.x.o.] and
[xo...xo...].

Proposal. In this paper, we propose two novel audio
representations that allows modeling this missing inter-
relationship. The first one is based on the application of
the Scale Transform along the two dimensions of time and
frequency. However, while this 2D representation allows rep-
resenting the inter-relationship between the various frequency
bands, it also produces shift-invariance over frequencies (in-
cluding invariance to circular rotation of the frequency axis)
which is not a desired property. Because of this unwanted
property, we propose a second representation which uses
statistics (inspired by the auditory experiments of McDermott
[4, 5]) to represent the inter-relationship between the various
frequency bands.

Potential uses. Potential uses of these representations are
the search by rhythm pattern (for example looking for iden-
tical rhythm patterns without being affected by the tempo) or
the automatic classification into rhythm-classes. These repre-
sentations would also benefit to any genre, mood classifica-
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tion or search by similarity systems that include rhythm de-
scription. Applications of these representations outside the
music field (i.e. when the scale is not the tempo) also concern
generic audio recognition.

Paper organization. The paper is organized as follow.
In section 2, we first review related works and highlight the
differences with previous proposals. We then introduce in
section 3 the Scale Transform along the two dimensions of
time and frequency, and propose two methods to build a
rhythm-content descriptor that takes into account frequency
inter-relationship (section 4). We then evaluate the two novel
representations in a task of rhythm class recognition and
discuss the results obtained (section 5).

2. RELATED WORKS

In this section, we briefly review existing methods to repre-
sent the rhythm of an audio signal. We also review the two
works that inspired our current proposal.

The first set of methods proposed to represent rhythm are
based on shift-invariant (but not scale-invariant) representa-
tions. For example, Foote [6] and Antonopoulos [7] derive
rhythm descriptors from a Self-Similarity-Matrix, Dixon [8]
samples the onset-energy-function at specific tempo-related
intervals to obtain a Rhythmic patterns, Wright [9] does the
same as Dixon for afro-cuban music clave pattern templates,
Tzanetakis [10] proposes the Beat histogram, Gouyon [11]
proposes a set of 73 descriptors derived from the tempo, the
periodicity histogram and the inter-onset-interval histogram.
To obtain tempo invariant descriptors, Peeters [12] proposes
to sample a spectral and temporal periodicity representations
of the onset-energy-function at specific frequencies related to
the tempo. Other approaches use Dynamic Periodicity Warp-
ing [13] to compare rhythms at different tempi.

A second set of methods uses shift and scale (tempo in
the case of music) invariant representations, usually the Scale
Transform (ST) [14]. Holzapfel et al. [2] were the first to
propose the use of the ST for rhythm representation. It should
be noted that the method proposed by Jensen [1], while not
mentioning the ST, follows a close path. In these works,
the ST is applied to the auto-correlation (used to add shift-
invariance) of the onset-energy function. This method was
also used by Prockup et al. [15] which apply a Discrete Co-
sine Transform to the ST coefficients to reduce its dimen-
sionality. Since there is only one onset-energy-function for
the whole set of frequencies, this method does not allow rep-
resenting the frequency location of the rhythm events. For
this reason, we proposed in Marchand et al. [3] to model the
rhythmic information on multiple perceptual frequency bands
with the ST. Since this method can be considered as a Mod-
ulation Spectrum in the Scale domain it was named Modu-
lation Scale Spectrum (MSS). We showed that for a rhythm
class recognition task, the MSS largely increases the recogni-
tion performances.

A first work that inspired our current proposal is [16] that
proposes a transform to describe a 2D signal in a shift and
scale-invariant way in both directions. This transform is a 2D
Scale Transform (scale-invariance) applied to a 2D-Fourier
Transform. The latter is used to obtain the shift-invariance
property. This transform is often named the Fourier-Mellin
Transform. It is extremely useful for, though not limited to,
image processing. It has been introduced by the optical re-
search community in the end of the seventies [16, 17] and has
been used in many fields since then: radar 2D signal analysis
[18, 19], pattern recognition in image [20, 21]. It has never
been used however for audio signal description.

The second work that inspired our current proposal is the
one of McDermott et al. [4, 5]. They proposed a set of au-
ditory statistics to model and generate sound textures. The-
ses statistics are based on how the auditory system summa-
rizes temporal information, and involves cross-correlations
between many frequency bands. Ellis et al. [22] used these
statistics for soundtrack classification and show a small im-
provement over the use of Mel Frequency Cepstral Coeffi-
cients (MFCC) statistics. It has never been used however for
rhythm description.

3. THE 1D AND 2D SCALE TRANSFORM

In this section, we introduce the 1D and 2D Scale Transform
for audio signal processing, that will be used in the section 4
to build rhythm-content descriptors.

3.1. The 1D Scale Transform

The Scale Transform (ST) is a specific case of the Mellin
Transform, which was introduced by Cohen in [14]. For a
1D signal x(t) over time t, the ST at scale ct is defined as:

S(ct) =
1√
2π

∫ ∞
0

x(t)t−jct−
1
2 dt (1)

Scale-invariance. One of the most important property of
the ST is its scale invariance. If S(ct) is the ST of a tempo-
ral signal x(t), then the ST of a time-scaled version of this
temporal signal

√
a x(at) is ejct ln aS(ct). Both x(t) and√

a x(at) have therefore the same modulus of the ST. The
ST can viewed as the Fourier Transform of an exponentially
re-sampled signal weighted by an exponential window:

S(ct) =
1√
2π

∫ ∞
−∞

x(et)e
1
2 te−jcttdt (2)

When x(t) represents the audio signal of a music track,
the scale correspond to the tempo (the speed at which a
rhythm pattern is played). The modulus of the ST is therefore
a representation independent of the tempo. This has been
used for tempo-invariant rhythm representations by [2, 3, 15].
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Fig. 1. Flowchart of the computation process of the 2D Modulation Scale Spectrum (2DMSS).

3.2. The 2D Scale Transform

For a 2D signal X(t, ω) over time t and frequency ω, the 2D
Scale Transform (ST) at scales ct and cω is defined as:

S(ct, cω) =

∫
t

(∫
ω

X(t, ω)ω−jcω−
1
2 dω

)
t−jct−

1
2 dt

As for the 1D ST, the 2D ST can be viewed as the 2D
Fourier Transform of an exponentially re-sampled signal on
both dimensions X(et, eω)eω/2et/2.

S(ct, cω) =

∫
t

(∫
ω

(
X(et, eω)eω/2et/2

)
e−jcωωdω

)
e−jcttdt

This transform has already been widely used in image
processing, to get scale-invariant representations [20, 21], but
never in audio signal processing.

3.3. Shift-invariance

It should be noted that neither the 1D nor the 2D Scale
Transforms are shift invariant, which means in the 1D case
|S(x(t))| 6= |S(x(t+a))|. For this reason, when the 1D Scale
Transform will be used in part 4.2, we will apply it on a shift-
invariant representation (the auto-correlation Rxxu(t, bi) of
the global-over-frequency onset-energy-function). In the 2D
case, when the 2D Scale Transform will be used in part 4.1,
it will be applied to a 2D shift-invariant representation (the
modulus of the 2D Fourier Transform Fu(ωt, ωγ)). In the
image processing literature, a 2D Fourier Transform followed
by a 2D Scale Transform is named the Fourier-Mellin Trans-
form.

4. APPLICATION TO RHYTHM DESCRIPTION

We describe here how the Scale Transform (1D or 2D) can be
used to build rhythm descriptors. We distinguish 4 descrip-
tors.

Holzapfel. The 1D Scale Transform is applied to the auto-
correlation of an onset-energy-function that represents
the full frequency range. There is no distinction be-
tween the frequency locations of rhythm events. This
is the initial method proposed by [2].

MSS. For each frequency band (Gammatone filters) we com-
pute the 1D Scale Transform of the auto-correlation of
the onset-energy-function within this band. The fre-
quency locations of rhythm events are represented
but independently (no inter-relationships). This is the
method we proposed in [3].

2DMSS. In section 4.1, we extend the idea of the MSS but
represent the inter-relationship between the frequency
bands using the 2D-Scale Transform of the modulus of
the 2D-Fourier Transform instead of the independent
1D-Scale Transforms of independent auto-correlation
functions.

MASSS. In section 4.2, we also extend the idea of the MSS
but simply represent the inter-relationship between the
onset-energy-functions using auditory statistics.

4.1. 2D Modulation Scale Spectrum (2DMSS)

In this method, we extend the idea of the MSS but represent
the inter-relationship between the frequency bands using the
2D-Scale Transform of the modulus of the 2D-Fourier Trans-
form instead of the independent 1D-Scale Transforms of in-
dependent auto-correlation functions. The flowchart of the
computation process of the 2DMSS is given in Figure 1 and
described below.

1. The audio signal x(t) is first separated into 64 Gamma-
tone2filters (using 4th order bandpass) centered on a log-
space from 26 to 9795 Hz.

2. For each filter output, we calculate an onset-energy func-
tion (OEF)3 using the method of Ellis [24]. This function
has a sampling rate of 13 Hz. The OEF of each filter are
then stacked into a matrix to form a 2D time/frequency
representation O(t, γi); i ∈ [1, 64].

3. We then perform a block analysis of O(t, γi). The block
analysis is performed using a 0.5 seconds hop size and a 8
seconds window duration of rectangular shape.

4. For each block u, we compute the modulus of the
2D Fourier Transform of Ou(t, γi). We denote it by

2These filters model the auditory system. 4th-order Gammatone filters
have been shown to be extremely close to the human auditory filters. We
used the implementation kindly proposed by Ma [23].

3An OEF is a function taking high values when an onset (beginning of a
discrete event in the audio signal) is present and low values otherwise.
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Fig. 2. Flowchart of the computation process of Modulation Scale Spectrum with Auditory Statistics (MASSS).

Fu(ωt, ωγ). It has a dimension of (512, 64) (we fixed
nfft,t = 512 and nfft,ωγ = 64).

5. We then compute the 2D Scale Transform of Fu(ωt, ωγ)
denoted by Su(ct, cγ). It has a dimension of nscale,t =
4096 by nscale,ωγ = 256.

6. We then average Su(ct, cγ) over blocks u to obtain
S(ct, cγ).

7. We finally reduce its dimensions by applying Principal
Component Analysis (PCA). We only keep the first (with
the highest eigenvalues or explained variance) 100 eigen-
vectors. The final dimension is therefore 100.

4.2. Modulation Scale Spectrum with Auditory Statistics
(MASSS)

The previous 2DMSS representation provides a scale and
shift invariant representation of the audio content and allows
to represent the inter-relationship between the various fre-
quency bands. However, it also produces shift-invariance
over frequencies, including shift-invariance when circularly
rotating the frequency axis. This property is not desired since
it will correspond to consider as equivalent low (kick) and
high (hi-hat) patterns. This is the reason why we propose
here a second representation which uses statistics (inspired
by the auditory experiments of McDermott) to represent the
inter-relationship between the various frequency bands.

Auditory statistics. In [4, 5], McDermott and al. show
evidence that “the auditory system summarizes temporal de-
tails of sounds using time-averaged statistics”. They show
that, in order to resynthesize sound textures, these statistics
should include the statistics of each individual frequency
band but should also include the cross-correlations between
the temporal energy profiles within each frequency band.

We therefore propose to add to the MSS, the correlations
between the onset-energy-functions of the various frequency
bands. The flowchart of the computation process of the
MASSS descriptor is given in Figure 2 and described below.

1. same as section 4.1 step 1, with 32 Gammatone filters.

2. same as section 4.1 step 2, with a sampling rate of 22 Hz.

3. The number of frequency bands is reduced from 32 to 4 by
summing adjacent bands together. The resulting matrix is
O(t, bi) i ∈ [1, 4].

4. Cross-correlation coefficients ccc(bi, bj) are computed
between frequency bi and bj using ccc(bi, bj) =∑
k O(tk, bi) ·O(tk, bj).

5. For each band bi, we then perform a frame analysis
of O(t, bi) and compute, for each frame u, its auto-
correlation: Rxxu(τ, bi) where τ denotes the time-lag.
The frame analysis is performed using a 0.5 seconds hop
size and a 8 seconds window duration of rectangular shape.

6. Finally, for each frequency band bi, we compute the Scale
Transform of Rxxu(τ, bi) over τ and average it over
frames u. We denote it byMSS(c, bi) where c is the scale
coefficient. We only retain the first 100 coefficient. The
dimensionaly ofMSS(c, bi) is therefore (100, 4). We de-
note by MASSS the concatenation of the MSS(c, bi) co-
efficients and the 10 ccc(bi, bj) coefficients.

5. EXPERIMENTS

In this section, we compare the ability to represent rhythm of
the proposed descriptors. For this we evaluate their perfor-
mances for a task of rhythm class recognition.

5.1. Task of rhythm class recognition
The task consists in correctly recognizing the rhythm class
of an audio track. For this we use datasets annotated into
rhythm classes (see section 5.2). We evaluate the perfor-
mances of the 2DMSS (section 4.1), the MSS alone, the
cross-correlation coefficients ccc alone, and finally both to-
gether (MASSS=MSS+ccc) (section 4.2). We compare them
to the best results published in [2] and [3]. For all classifi-
cation tasks, we use Support Vector Machines (SVM) with
a radial basis function kernel. Parameters of the SVM4 are
found using grid-search. The results are presented in term of
mean-over-classes recall5using 10-fold cross-validation.

4The range of search of gamma is [10−10; 105] and the range of search
of C is [10−10; 105].



Table 1. Results on the 3 different datasets. All the results are in term of mean-over-classes recall (except [2] which is an
accuracy). The state-of-the-art results are presented in italic. The results in bold are improving or performing equally with
state-of-the-art. Ballroom Extended Ballroom Cretan dances

Method Result parameters Result parameters Result parameters

State-of-the-art 93,1% [3] γ = 12 - - 77.8% [2] sr = 50 c = 160
sr = 50 c = 100

Proposal: 2DMSS 91.1% γ = 32 nfft = 64; 512 - - 63,0% γ = 32 nfft = 64; 512

sr = 13 nsc = 256; 4096 sr = 10 nsc = 256; 4096

Proposal: MSS 95,1% γ = 32 b = 4 94,6% γ = 32 b = 4 75,6% γ = 8 b = 8

sr = 22 c = 100 sr = 22 c = 100 sr = 50 c = 60

Proposal: ccc 41,1% γ = 32 b = 4 31,1% γ = 32 b = 4 36,6% γ = 32 b = 10

Proposal: MASSS 96,0% γ = 32 b = 4 94,9% γ = 32 b = 4 77,2% γ = 32 b = 10

sr = 22 c = 100 sr = 22 c = 100 sr = 22 c = 40

5.2. Datasets

Ballroom. The Ballroom dataset contains 698 tracks
of 30 seconds divided into 8 music genres (‘ChaChaCha’,
‘Jive’, ‘QuickStep’, ‘Rumba’, ‘Samba’, ‘Tango’, ‘Viennese-
Waltz’, ‘Waltz’). This dataset was created for the ISMIR
2004 rhythm description contest [25]. It is extracted from the
website www.ballroomdancers.com. We consider the genre
labels as classes of rhythm because in ballroom music, the
genre is closely related to the type of rhythm pattern.

Extended Ballroom. Although the Ballroom dataset
is relevant for rhythm classification, it suffers from sev-
eral drawbacks: poor audio quality, small size, presence
of duplicates. We therefore decided to update it. Since
www.ballroomdancers.com still exists and provides tempo
and genre annotations for thousands of 30-second tracks, we
extracted all its content again. The new Extended Ballroom
dataset is now 6 times larger and has 1 new class ‘Foxtrot’.
We show in Table 2 the distribution of the number of tracks
by rhythm class. It contains 3992 tracks divided into 9 rhythm
classes (four additional classes are not displayed since they
contained less tracks: Pasodoble (53), Salsa (47), Slowwaltz
(65) and Wcswing (23)). The dataset can be found at:

http://anasynth.ircam.fr/home/media/ExtendedBallroom
along with the Python scripts used to extract and clean this
dataset. The main advantages of the Extended Ballroom
dataset over the standard one are: better audio quality, larger
size, 1 new rhythm class and repetitions (manual annotations
of duplicates, karaoke, repetitions, . . . ). More details can be

Table 2. Rhythm repartition of the Ballroom datasets
Class Ballroom Extended Ballroom v1

Chacha 111 455
Foxtrot 507

Jive 60 350
Quickstep 82 497

Rumba 98 470
Samba 86 468
Tango 86 464

Viennesewaltz 65 252
Waltz 110 529
Total 698 3992

found in [26].
Greek dances. The third dataset is the “Greek dances”

one. This dataset was kindly provided by the author. It con-
tains 180 excerpts of the following 6 dances commonly en-
countered in the island of Crete: Kalamatianos, Kontilies,
Maleviziotis, Pentozalis, Sousta and Kritikos Syrtos. It was
introduced in [2]. This dataset is more challenging than the
Ballroom one since: 1) the rhythm classes have a wider tempo
distribution hence a good rhythm descriptor will have to be
tempo-independent; 2) most rhythm classes share the same
meter (All the dances have a 2

4 meter except Kalamatianos
which has a 7

8 meter); hence recognizing the meter will not
be sufficient to recognize the classes.

5.3. Discussion of results

In Table 1, we compare the performances obtained by our four
rhythm descriptors to the state of the art results of Holzapfel
et al. [2] and Marchand et al. [3]. The sign - denotes the fact
that the results are not available for the given configuration.
All the results are presented in term of mean-over-classes re-
call, except Holzapfel’s which is an accuracy. Along with the
mean-recall, we indicate the parameters used for computing
our descriptors: γ (number of Gammatone filters), b (final
number of frequency band after grouping), sr (sampling rate
of the onset-energy function), c (number of scale coefficients
kept for each frequency band), nfft and nsc (sizes of the 2D
Fourier Transform and 2D ST respectively).

First, it should be noted that the results of [3] on the Ball-
room dataset (93.1%) were based on a MSS with many fre-
quency bands. The new results presented as MSS (95.1%)
are based on a reduced number of frequency bands which
seems beneficial. Over the two proposed new rhythm de-
scriptors (2DMSS and MASSS), only the MASSS succeeded
to outperform the MSS descriptor. For the Ballroom dataset,
our MASSS descriptor outperforms (96,0%) state-of-the-art
methods (93.1%) by 3%. On the Extended Ballroom dataset,
our MASSS descriptor scores 94,9%. No comparison with

5The recall score for a class is the number of correctly detected items over
the number of items in this class. The mean-over-class recall is the average
of all recall scores of each class.



state-of-the-art method is possible since this dataset is new
for the research community. While the results obtained on this
new dataset are slightly lower than those on the standard Ball-
room, one should consider that not only the number of files is
5 time larger but also the number of classes is larger (9 over 8).
Therefore 94.9% on 9 classes is actually better than 96% on 8
classes. On the Cretan dances dataset, the MASSS descriptor
has a mean-recall of 77,2% which is somewhat equivalent to
state-of-the-art Holzapfel’s accuracy of 77,8%.

6. CONCLUSION
We proposed two novel audio descriptors (2DMSS and
MASSS) that allows representing in a shift and scale invariant
way the time and frequency content of an audio signal and
differ by the way they model the inter-relationship between
the various frequency bands.

The first one, named 2DMSS, is based on the applica-
tion of the Scale Transform along the two dimensions of time
and frequency. This method was not successful and lead to
lower scores than our initial results [3]. It can be explained
as follow. While this 2D representation allows representing
the inter-relationship between the various frequency bands, it
also produces shift-invariance over frequency, including in-
variance when circularly rotating the frequency axis. This
means that low and high frequencies can not be distinguished
any more, which is not a desired property

For this reason, we proposed a second representation
which uses statistics (inspired by the auditory experiments
of McDermott) to represent the inter-relationship between
the various frequency bands. This second descriptor, named
MASSS, provides the new top-results for these datasets. We
see that in each of the three experiments, adding the cross-
correlation coefficients improves the classification result:
0,9% for the Ballroom, 0,3% for the Extended Ballroom and
1,6% for the Cretan dances dataset. These are promising
scores and future works will concentrate on testing MASSS
as input to other classification tasks.
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