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Abstract

We propose a novel unsupervised singing voice detection method which use single-channel Blind Audio
Source Separation (BASS) algorithm as a preliminary step. To reach this goal, we investigate three promising
BASS approaches which operate through a morphological filtering of the analyzed mixture spectrogram.
The contributions of this paper are manyfold. First, the investigated BASS methods are reworded with the
same formalism and we investigate their respective hyperparameters by numerical simulations. Second, we
propose an extension of the KAM method for which we propose a novel training algorithm used to compute a
source-specific kernel from a given isolated source signal. Second, the BASS methods are compared together
in terms of source separation accuracy and in terms of singing voice detection accuracy when they are
used in our new singing voice detection framework. Finally, we do an exhaustive singing voice detection
evaluation for which we compare both supervised and unsupervised singing voice detection methods. Our
comparison explores different combination of the proposed BASS methods with new features such as the
new proposed KAM features and the scattering transform through a machine learning framework and also
considers convolutional neural networks methods.

1 Introduction

Audio source separation aims at recovering the isolated signals of each source (i.e. each instrumental part) which
composes an observed mixture [1, 2]. Although humans can easily recognize the different sound entities which
are active at each time instant, this task remains challenging when it has to be automatically completed by
an unsupervised algorithm. Mathematically speaking, Blind Audio Source Separation (BASS) is an “ill-posed
problem” in the sense of Hadamard [3], however it remains intensively studied since many decades [1, 4–7].
In fact, BASS is full of interest because it can find many applications such as music remixing (karaoke, re-
spatialization, source manipulation), and signal enhancement (denoising). Thus, BASS can directly be used as
a part of a signal detection method (i.e. singing voice), in relation with the source separation model. This
study, addresses the single-channel blind case, when several sources si (i ∈ [1, I], with I ≥ 2) are present in a
unique instantaneous mixture x expressed as:

x(t) =
I

∑

i=1

si(t). (1)

Despite the simplicity of the mixture model of Eq. (1), this configuration is more challenging to solve than multi-
channel mixtures. In fact, multi-channel methods such as [2, 8] require at least 2 distinct observed mixtures
with a sufficient orthogonality in the time-frequency plane between the sources, to provide satisfying separation
results. As we address the underdetermined case (where the number of sources is greater than the number of
observations), Independent Component Analysis (ICA) methods can neither be directly used [1]. Moreover,
methods inspired by Computational Auditory Scene Analysis (CASA) [9], such as [5, 10, 11], are often not
robust enough for processing real-world music mixtures and should be addressed through an Informed Source
Separation (ISS) framework using side-information in a coder-decoder scheme as proposed in [12].

For all these reasons, we focus on another class of robust BASS methods based on time-frequency represen-
tation morphological filtering. These methods assume that the foreground voice and the instrumental music
background have significantly different time-frequency regularities which can be exploited to assign each time-
frequency point to a source. To illustrate this idea, vertical lines can be observed in a drum set spectrogram
due the spectral regularities at each instant, contrarily to an harmonic source which has horizontal lines due to
the regularities over time of each active frequency (i.e. the partials). A recent comparative study [13] leads us
to three very promising approaches which can be summarized as follows.

1) Total variation approach proposed by Jeong and Lee [14], aims at minimizing a convex auxiliary function,
related to the temporal continuity (for harmonic sources), the spectral continuity (for percussive sounds) and
the sparsity for the leading singing voice. The solutions provides estimates of the spectrogram of each source.
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2) Robust Principal Component Analysis (RPCA) [15] is used for voice/music separation in [16]. This
technique decomposes the mixture spectrogram into two matrices: a low rank matrix associated to the spec-
trogram of the repetitive musical background (the accompaniment), and a sparse matrix associated to the lead
instrument which plays the melody.

3) Kernel Additive Modeling (KAM) as formalized in [17], unifies several BASS approaches into the same
framework: REPET [18] and Harmonic Percussive Source Separation (HPSS) through median filtering [19].
Both methods use the source-specific regularities in their time-frequency representations to compute a source
separation mask. Hence, each source is characterized by a kernel which models the vicinity of each time-
frequency point in a spectrogram. This allows to estimate each source using a median filter based on its specific
kernel. This idea was extended through other source-specific kernels in [17, 20–22] and in the present paper.

Thus, the purpose of this work is first to unify these BASS methods into the same framework to segregate
a monaural mixture into 3 components corresponding to the percussive part, the harmonic background and
the singing voice. Second, we introduce a new unsupervised singing voice detection method which can use
any BASS method as a preprocessing step. Finally, the BASS methods are compared together in terms of
separation quality and in terms of singing voice detection accuracy. Our evaluation also considers a comparison
with supervised state-of-the-art singing voice detection methods such as [23] which uses deep Convolutional
Neural Networks (CNN).

This paper is organized as follows. In Section 2, we shortly describe the proposed BASS methods with an
extension of the KAM method for source-specific kernel training. In Section 3, we introduce our framework
for singing voice detection based on BASS. In Section 4, comparative results for source separation and singing
voice detection are presented. Finally, conclusion and future works are discussed in Section 5.

2 Source separation through spectrogram morphological filtering

2.1 Typical Algorithm and Oracle Method

We investigate three promising BASS methods based on morphological filtering of the mixture’s spectrogram
(defined as the squared modulus of its Short-Time Fourier Transform (STFT) [24]). Each method aims at
estimating the real-valued non-negative matrices of size F × T , which correspond to the source separation
masks Mv, Mh and Mp, respectively associated to the voice, the harmonic accompaniment and the percussive
part. Thus, a typical algorithm using any BASS method, can be formulated by Algorithm 1.

Algorithm 1: Typical BASS algorithm based on morphological filtering. STFT() and invSTFT() compute
respectively the STFT and its inverse from a discrete-time signal.

Data: x: observed mixture, α: user parameter (cf. Fig. 1)
Result: ŝi: estimated source signals, Ŝi: STFTs of the estimated sources
X ← STFT(x)
(Mv,Mh,Mp)← BASSMethod

(

|X |2
)

for i ∈ {v, h, p} do
Ŝi ← |Mi|

α

∑
j∈{v,h,p} |Mj |α

X

ŝi ← invSTFT(Ŝi)

In this algorithm, |Mi|
α

∑
j∈{v,h,p} |Mj |α

approximates the parameterized Wiener filter [27] of the source i, for

which an optimal value of |Mi|α in the minimal Mean Squared Error (MSE) sense, corresponds to the source’s
spectral density [28]. In practice, the effect of parameter α on the separation quality is illustrated in Fig. 1
which shows the results provided by Algorithm 1 when applied on a mixture made of 3 audio sources (voice,
keyboard/synthesizer and drums). This experiment uses an oracle BASS method (i.e. original sources are
assumed known) which sets the source mask as the modulus of the STFT of each source such as Mi = |Si|. The
highest median of the MSE-based results (cf. Fig. 1 (a)-(b)) is reached with α ≈ 2. Interestingly, best perceptual
results are reached with α ≈ 1 (cf. Fig. 1 (c)-(d)). A detailed description of Signal-to-Interference Ratio (SIR),
Signal-to-Artifact Ratio (SAR) and Signal-to-Distortion Ratio (SDR) measures can be found in [25, 26]. The

Reconstruction Quality Factor (RQF) (cf. Fig. 1 (a)) is defined as [29]: RQF(s, ŝ) = 10 log10

( ∑
n
|s[n]|2∑

n
|s[n]−ŝ[n]|2

)

,

where s and ŝ stand respectively for the original source and its estimation.

2.2 Total Variation Approach

Blind source separation can be addressed as an optimization problem solved using a total variation regular-
ization. This approach has successfully been used in image processing for noise removal [30]. It consists in
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Figure 1: Effect of parameter α in Algorithm 1 on the source separation quality of a musical mixture made of
3 sources. Measures are expressed in terms of BSS Eval v2 [25] (a), BSS Eval v3 [26] (b)-(d) which also assess
the perceptual quality (high values are better).

minimizing a convex auxiliary function which depends on regularization parameters λ1, λ2 to control the rela-
tive importance of the smoothness of the expected masks Mh and Mp respectively over time and frequencies.
This choice is justified by the harmonic or spectral stability of Mh and Mp, and the sparsity of Mv. Being a
discrete-time signal x[n] and its discrete STFT, X [n,m], where n = 1...T and m = 1...F , are the time and
frequency indices such as t = nTs and ω = 2π m

FTs
, Ts being the sampling period. The Jeong-Lee-14 method [14]

minimizes the following auxiliary function:

J(Mv,Mh,Mp) =
1

2

∑

n,m

(Mh[n− 1,m]−Mh[n,m])2

+
λ1

2

∑

n,m

(Mp[n,m− 1]−Mp[n,m])2

+ λ2

∑

n,m

|Mv[n,m]| (2)

subject to: Mv +Mh +Mp = |X |2γ

with: Mv[n,m],Mh[n,m],Mp[n,m] ≥ 0.

Hence, solving
∂J(Mv ,Mh,Mp)

∂Mh
= 0 and

∂J(Mv ,Mh,Mp)
∂Mp

= 0, allows to derive update rules which lead to an

iterative method formulated by Algorithm 2 [14]. According to the authors, the best separation results are
obtained with 16 kHz-sampled signal mixtures, using 64 ms-long 3

4 -overlapped analysis frames, in combination
with a 120 Hz high-pass filter applied on the mixture, and using method parameters: λ1 = 0.25, λ2 = 10−1λ1,
γ = 1

4 (i.e. α = 2) and Niter = 200.
2.3 Robust Principal Component Analysis

In a musical mixture, the background accompaniment is often repetitive while the main melody played by the
singing voice contains harmonic and frequency modulated components with a non-redundant structure. This
property allows a decomposition of the mixture spectrogram W = |X |2 into two distinct matrices where the
background accompaniment spectrogram is associated to a low rank matrix, and the foreground singing voice
is associated to a sparse matrix (i.e. where most of the elements are zeros or close to zero). Thus, a solution
inspired from the image processing methods is provided by RPCA [15] which decomposes a non-negative matrix
W into a sum of two matrices Mhp and Mv, through an optimization process. It can be formulated as the
minimization of the following auxiliary function expressed as:

J(Mhp,Mv) = ||Mhp||∗ + λ||Mv||1 (3)

subject to: W = Mhp +Mv

3



Algorithm 2: Jeong-Lee-14’s BASS algorithm.

Data: x: observed mixture, λ1, λ2, γ: user parameters, Niter: number of iterations
Result: ŝi: estimated source signals, Ŝi: STFTs of the estimated sources
X ← STFT(x)
W ← |X |2γ
Mh ← 0, Mp ← 0
for it← 1 to Niter do

Mh[n,m]← min
(

Mh[n+1,m]+Mh[n−1,m]
2 + λ1

2 ,

W [n,m]−Mp[n,m])

Mp[n,m]← min
(

Mp[n,m+1]+Mp[n,m−1]
2 + λ1

2λ2

,

W [n,m]−Mh[n,m])

Mv ←W − (Mh +Mp)
for i ∈ {v, h, p} do

Ŝi ← |Mi|
1

2γ

∑
i
|Mi|

1

2γ

X

ŝi ← invSTFT(Ŝi)

with ||Mhp||∗ =
∑

k σk(Mhp) the nuclear norm of matrix Mhp, σk being its k-th singular value, and ||Mv||1 =
∑

n,m |Mv[n,m]| being the l1-norm of the matrix Mv. Here, λ denotes a damping parameter which should be

optimally chosen as λ = 1√
max(T,F )

[15,16]. Eq. (3) is then solved by the augmented Lagrangian method which

leads to the following new auxiliary function (adding new variable Y ):

J(Mhp,Mv, Y ) = ||Mhp||∗ + λ||Mv||1+
〈Y,W −Mhp −Mv〉+

µ

2
||W −Mhp −Mv||2F (4)

where 〈a, b〉 = aT b, and µ is a Lagrangian multiplier. Thus, Eq. (4) is efficiently minimized through the Principal
Component Pursuit algorithm [31] formulated by Algorithm 3. Our empirical experiments on real-word audio
signals show that µ = 10λ and Niter = 1000 provide satisfying results.

Algorithm 3: Principal Component Pursuit by alternating directions algorithm [31].

Data: W : spectrogram of the mixture, λ, µ: damping parameters, Niter: number of iterations
Result: L = Mhp, S = Mv: separation masks for the voice (v) and the music accompaniment (hp)
S ← 0, Y ← 0
for it← 1 to Niter do

L← argminLJ(L, S, Y )
S ← argminSJ(L, S, Y )
Y ← Y + µ(W − L− S)

For the sake of computation efficiency, it can be shown that the update rules in Algorithm 3 can be computed
as [15]:

argminLJ(L, S, Y ) = Sλµ−1 (W − L+ µ−1Y ) (5)

with Sτ (x) = sign(x)max(|x| − τ, 0)

argminSJ(L, S, Y ) = Dµ−1(W − S + µ−1Y ) (6)

with Dτ (X) = USτ (Σ)V ∗

where X = UΣV ∗ is the singular value decomposition of matrix X and V ∗ denotes the conjugate transpose
of matrix V (i.e. V is the matrix where each column is a right-singular vector). Finally, each source signal is
recovered using the estimated separation masks Mv (equal to the sparse matrix S) and Mhp (equal to the low-
rank matrix L), through the parameterized Wiener filter applied on the STFT of the mixture as in Algorithm
1.

2.4 Kernel Additive Modeling

The KAM approach [17,21] is inspired from the locally weighted regression theory [32]. The main idea assumes
that the spectrogram of a source is locally regular. In other words, it means that the vicinity of each time-
frequency point (t, ω) in a source’s spectrogram can be predicted. Thus, the KAM framework allows to model

4



source-specific assumptions such as the harmonicity of a source (characterized by horizontal lines in the spectro-
gram), percussive sounds (characterized by vertical lines in the spectrogram) or repetitive sounds (characterized
by recurrent shapes spaced by a time period in the spectrogram). A KAM-based source separation method can
be implemented according to Algorithm 4 using the desired source-specific kernels Kb

i corresponding to binary
matrices of size h× w as illustrated in Fig. 2.

Algorithm 4: KAM-based source separation algorithm.

Data: X : mixture STFT, Kb
i : kernel of each source i ≤ I, α: user parameter, Niter: number of iterations

Result: ŝi: estimated source signals, Ŝi: STFTs of the estimated sources
Ŝi ← X

I
, ∀i ∈ [1, I]

for it← 1 to Niter do
for n← 1 to T and m← 1 to F do

for i← 1 to I do

Mi ← median
∣

∣

∣
Ŝi[n+ c′ − w−1

2 ,m+ l′ − h−1
2 ]

∣

∣

∣
,
{

(c′, l′) : Kb
i (c

′, l′) = 1
}

Ŝi[n,m]← |Mi|
α

∑
I
j=1

|Mj |α
X [n,m], ∀i ∈ [1, I]

ŝi ← invSTFT
(

Ŝi

)

, ∀i ∈ [1, I]

2.4.1 How to choose a Kernel for source separation?

Figure 2: Illustration of several possible kernels [17], (a) for percussive sources, (b) for harmonic sources, (c)
for repetitive elements and (d) for smoothly varying sources (e.g. vocal).

As a kernel aims at modeling the vicinity at each point of a time-frequency representation, several typical
kernels can be extracted from the literature as presented in Fig. 2. HPSS methods using median filtering
[19, 33] can use: (a)+(b). Algorithms such as the REPET algorithm [18, 34], which can separate vocal from
accompaniment uses: (c)+(d). These methods use the repetition rate denoted T in Fig. 2, corresponding to
the music tempo. For a musical piece T can be constant such as proposed in [18] or time-varying (adaptive) as
in [33].

Another question is how to choose the size of a kernel in order to optimize the separation quality? An
empirical answer provided by grid search is illustrated in Fig. 3 which shows the best choice for h and w, to
maximize the separation quality measures (RQF, SIR, SDR, SAR). For this experiment the STFT of a signal
sampled at Fs = 22.05 kHz is computed using a Hann window of length N = 2048 samples (≈92 ms) and
an overlap ratio between adjacent frames equal to 3

4 . The separation is obtained using two distinct kernels
(cf. Fig. 2 (a)+(b)), to provide 2 sources from a mixture made of a singing voice signal and drums. In this
experiment, the best SIR equal to 18.23 dB is obtained with h = 21 and w = 35. This is an excellent separation
quality in comparison with the oracle BASS method used in Fig. 1. RQF, SDR and SAR related to signal
quality, are also satisfying but not optimal.

2.4.2 Towards a training method for supervised KAM-based source separation

To the best of our knowledges, no dedicated method exists to automatically define the best source-specific kernel
to use through a KAM-based BASS method. Hence, a classical approach consists of an empirical choice of a
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Figure 3: Comparison of the separation quality, measured in terms of RQF, SIR, SDR, SAR [25], as a func-
tion of h and w, the dimensions of the separation kernels. We considered a musical piece made of 2 sources
(voice/drums). A darker red color corresponds to a better separation quality.

predefined typical kernel and of its size. To this end, we propose a new method depicted by Algorithm 5, which
provides a source-specific kernel Kb

i ∈ {0, 1}h×w associated to the source i. The main idea consists in modeling
the vicinity of each time-frequency point through an averaged neighborhood map obtained after visiting each
coordinate of a source spectrogram. The resulting kernel denoted Ki ∈ R

h×w is then binarized in order to be
directly used by the KAM method, through a user-defined threshold Γ such as:

Kb
i [c, l] =

{

1 if Ki[c, l] > Γ

0 otherwise
. (7)

Our new method based on customized kernels (KAM-CUST) is applied on musical signals in Fig. 5. The results
clearly illustrate the different trained source-specific kernels between singing voice, keyboard/synthesizer and
drums as in Fig. 2.

Algorithm 5: KAM training algorithm1.

Data: Si: a source STFT
Result: Ki ∈ R

h×w, h and w being odd integers.
Kj[c, l]← 0, ∀c ∈ [1, w], ∀l ∈ [1, h], and ∀j ∈ [1, TF ]
pj ← 0, ∀j ∈ [1, TF ]
j ← 1
for n← 1 to T and m← 1 to F do

Kj ←
∣

∣Sj [n− c−1
2 : n+ c−1

2 ,m− h−1
2 : m+ h−1

2 ]
∣

∣

Kj ← Kj

||Kj ||

pj ← |Si[n,m]|2
j ← j + 1

for c← 1 to w and l← 1 to h do

Ki[c, l]←
∑

TF
j=1

Kj [c,l]pj
∑

TF
j=1

pj

To show the efficiency of this training method, we apply Algorithm 5 on each isolated component of the
same mixture as before made of 3 sources (voice, keyboard/synthesizer and drums) sampled at Fs = 22.05 kHz.
The resulting trained kernels displayed in Fig. 5 are then used in combination with Algorithm 4 for KAM-based
BASS. In this experiment, we compare the separation results obtained by our proposal (KAM-CUST) with
h = 21, w = 35, Niter = 4, α = 2 (cf. Table 1 (a)), with the results provided by the KAM-REPET algorithm
as implemented by Liutkus [20, 34] (cf. Table 1 (c)) and when KAM-REPET is combined with the HPSS
method [19] in order to obtain 3 sources (cf. Table 1 (b)).

The results show that the KAM method combined with trained kernels can significantly outperforms others
state-of-the-art methods, particularity in terms of RQF, SIR. Our method also obtains acceptable SDR and

1A[a : b, c : d] denotes the submatrix of A such as (A[i, j])i∈[a,b],j∈[c,d]
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Figure 4: Separation quality using trained kernels on a mixture made of 3 sources as a function of the number
of iterations Niter.
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Figure 5: Kernels provided by Algorithm 5 with Γ = 0.54, h = 21, w = 35, applied on a mixture of 3 sources:
1) singing voice, 2) keyboard/synthesizer and 3) drums. The first row corresponds to Ki and the second one to
Kb

i .

Table 1: Separation of a mixture made of 3 sources using different KAM configurations.
(a) new proposed (KAM-CUST) semi-blind approach using the 3
trained kernels in Fig. 5 (h = 21, w = 35, Niter = 4, α = 2)

Source RQF (dB) SIR (dB) SDR (dB) SAR (dB)
voice 6.88 9.12 6.14 9.68

keyboard 2.31 8.36 -1.45 -0.38
drums 6.26 20.98 5.12 5.27

(b) KAM method using REPET kernels [20, 34] combined with
HPSS [19].

Source RQF (dB) SIR (dB) SDR (dB) SAR (dB)
voice 3.16 10.33 0.30 -1.14

keyboard 0.89 4.67 -1.4 1.10
drums -3.20 3.01 -3.36 -0.47

(c) KAM method using REPET kernels [20, 34], without HPSS

Source RQF (dB) SIR (dB) SDR (dB) SAR (dB)
voice. 4.76 8.06 3.33 5.74

keyb.+drums 1.09 4.04 -2.94 -0.52

SAR (above 5 dB except for the keyboard recovered signal). On the other side, the best SIR result (characterized
by a better source isolation) for the extracted singing voice signal, is provided by the combination of the REPET
with the HPSS method. However, this approach obtains a poor SDR and SAR results and a lower RQF than
using our proposal. Hence, low SDR and low SAR correspond to a poor perceptual audio signal quality where
the original signal is altered by undesired artifacts (i.e. undesired sound effects and additive noise).

The impact of the number of iterations Niter using KAM-CUST is investigated in Fig. 4 which shows that
the best RQF for the extracted singing voice can be reached for Niter = 4. A higher value of Niter increases the
computation time and can improve the SIR of the accompaniment (which corresponds to a better separation),
however it can also add more distortion and artifacts as shown by the SDR and SAR curves which decrease
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when Niter > 4 for the resulting sources.

3 Singing voice detection

In this section, we propose several approaches to detect at each time instant if a singing voice is active into a
polyphonic mixture signal. The proposed framework illustrated by Fig. 6 uses source separation as a preliminary
step before applying a singing voice detection. We choose to investigate both the unsupervised approach and
the supervised approach which uses trained voice models to help the recognition of signal segments containing
voice.

Figure 6: Proposed framework for music source separation and singing voice detection from a polyphonic
mixture x. HPSS [19] is only used separately when this capability is not included with the BASS method (i.e.
KAM-REPET and RPCA). Trained voice models are only used by the supervised approaches.

3.1 Unsupervised Singing Voice Detection

In the unsupervised approach, we do not train specific model for singing voice detection. We only compute
a Voice-to-Music Ratio (VTMR) on the estimated signals provided by the BASS methods2. The VTMR
is a saliency function which is computed on non-silent frames. Thus, two user-defined thresholds are used
respectively for silence detection Γs and for voice detection Γv. The voice detection process can thus be
described as follows for an input signal mixture x.

1. Computation of ŝv and ŝhp = ŝh+ ŝp, respect to x = ŝv + ŝhp, using one of the previously proposed BASS
method in Section 2.

2. Application of a band-pass filter on ŝv to allow frequencies in range [120, 3000] Hz (adapted to a singing
voice bandwidth).

3. Computation of the VTMR on each signal frame of length Nv by step ∆n, centered on sample n, as:

E[n] =

n+Nv
2

∑

k=n−Nv
2

|x[k]|2

VTMR[n] =























n+Nv
2

∑

k=n−Nv
2

|ŝv[k]|2

E[n] , if E[n] > Γs

0 otherwise

(8)

4. The decision to consider if the frame center at time index n contains a singing voice is taken when
VTMR[n] > Γv, with Γv ∈ [0, 1]. Otherwise, an instrumental or a silent frame is considered.

Hence, in our method we assume that despite errors for estimating the voice signal ŝv, its corresponding energy
computed on a frame provides sufficiently relevant information to detect the presence of a singing voice in the
analyzed mixture. According to this assumption, the selected threshold Γv related to VTMR should be chosen
close to 0.5. A lower value is however less restrictive but can provide more false positive results. About the
silent detection threshold Γs, a low value above zero should be chosen to increase robustness to estimation
errors and to avoid a division by zero in Eq. (8). Hopefully, this parameter has shown a weak importance on
the voice detection results when it is chosen sufficiently small (e.g. Γs = 10−4). An illustration of the proposed
framework using the KAM-REPET BASS method is presented in Fig. 7 which displays the VTMR (plotted
in black) computed for the musical excerpt MusicDelta Punk taken from the MedleyDB dataset [35]. The
annotation (also called ref.) is plotted in green and the frames which are detected as containing singing voice
correspond to red crosses. In this short excerpt (cf. Fig. 7), results are excellent since the average recall is 0.83,
the average precision is 0.63 and the F-measure is equal to 0.72. Further explanations about these evaluation
metrics are provided in Section 4.3.2Note that in the case of KAM-CUST, the separation model is trained.

8



0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

time [s]

vo
ic

e−
to

−
m

us
ic

 r
at

io
 (

V
T

M
R

)

Rec
v
=0.67, Rec

ins
=1.00, av

Rec
=0.83 ; Prec

v
=1.00, Prec

ins
=0.28, av

Prec
=0.64 ; F

meas
=0.72

 

 

ref.

estim.

detect.

Figure 7: Unsupervised voice detection using KAM-REPET for BASS, applied on the annotated track Mu-
sicDelta Punk taken from MedleyDB (Γv = 0.5).

3.2 HPSS and F0 Filtering

In the proposed framework (cf. Fig. 6), any voice/music separation method can be combined with a HPSS
method to estimate the percussive part ŝp when it is not directly modeled by the BASS method (i.e. KAM-
REPET and RPCA). For this purpose, we simply use KAM with source-specific kernels (a)+(b) presented in
Fig. 3. This method is also equivalent to the median filtering approach proposed in [19]. In order to enhance the
harmonicity of the voice part, we can apply F0 filtering on the estimated singing voice signal ŝv. This method
previously proposed in [36] for RPCA, consists in estimating at each instant the fundamental frequency F0 and
to apply a binary mask on a time-frequency representation to isolate the harmonic components (partials) of
the predominant F0 of ŝv, from the background music. In our implementation, the YIN algorithm [37] was
used for single F0 estimation before the filtering process which considers at each instant, the spectrogram local
maxima of the vicinity of each integer multiple of F0, as the singing voice partials. Hence, the residual part (not
recognized as the partials) is removed from ŝv and added to ŝh (the harmonic instrumental accompaniment).
In our experiment, F0 Filtering was only combined with RPCA to provide a slight improvement of the original
method.

3.3 Supervised Singing Voice Detection

3.3.1 Method description

This technique uses a machine learning framework which remains intensively studied in the literature [23,38,39].
It consists in using annotated datasets to train a classification method to automatically predict if a signal
fragment of a polyphonic music contains singing voice. Here, we propose to investigate two approaches:

• the “classical” supervised approach which applies singing voice detection without source separation (i.e.
directly on the mixture x),

• the supervised BASS approach which applies singing voice detection on the isolated signal associated to
voice provided by a BASS method (i.e. ŝv).

For the classification, each signal is represented by a set of features. In this study, we investigate separately
the following descriptors: Mel Frequency Cepstral Coefficients (MFCC) of sources signals as proposed in [38],
trained KAM kernels Ki provided by Algorithm 5, Timbre ToolBox (TTB) [40] features and coefficients of the
Scattering Transform (SCT) [41]. In order to reduce overfitting, we use the Inertia Ratio Maximization using
Features Space Projection (IRMFSP) algorithm [42] as a features selection method.

During the training step, an annotated dataset is used to model the singing voice segments and the instru-
mental music segments. Hence, we obtain 3 distinct models:

• when isolated voice and music signals are available (i.e. MIR1K and MedleyDB), they are used to obtain
respectively the models µv and µm.

• when a singing voice is active over a music background, (i.e. for all datasets) a model µvm is obtained.

During the recognition (testing) step, a trained classification method is then applied on signal fragments to
detect singing voice activity.
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3.3.2 Features selection for voice detection

In order to assess the efficiency of the proposed features for the supervised method, we computed for the Jamendo
dataset [38], a 3-fold cross validation (with randomly defined folds) using the Support Vector Machines (SVM)
method with a radial basis kernel, combined with the IRMFSP method [42] to obtain the top-100 best features
to discriminate between vocal and musical signal frames. In this experiment, each music except is represented
by concatenated features vectors computed on each 371 ms-long frames (without overlap between adjacent
frames). We configure each method such as KAM provides 361 values (using w = h = 19), MFCCs provide 273
values (13 MFCCS on 21 frames), TTB provides 164 coefficients and SCT provides 866 coefficients. The results
measured in terms of F-measure are displayed in Table 2 and shows that SCT is the most important feature
which outperforms the other ones. Despite KAM shows its capabilities for source separation, it however provides
the poorest results but close to MFCCs results, for singing voice detection. The best results are obtained thanks
to SCT which should be used in combination with the TTB.

Table 2: Investigation of the most efficient features for singing voice detection on the Jamendo dataset.
KAM MFCC TTB SCT Fmeas

x .75
x .80

x .82
x .89

x x .82
x x .83
x x .88

x x .85
x x .89

x x .89
x x x .84
x x x .88
x x x .88

x x x .89
x x x x .89

4 Numerical results
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Figure 8: Objective and perceptual BASS quality results comparison on the test-fold of the MIR1K dataset.

4.1 Datasets

In our experiments, we use several common datasets allowing evaluation for source separation (MedleyDB,
MIR1K) and singing voice detection from a polyphonic mixture. About singing voice detection, each dataset is
split in several folds corresponding to training and test folds which are both used by the evaluated supervised
methods. The unsupervised methods only use the test fold. Hence, we used 3 datasets.

• Jamendo [38] contains creative commons music track with singing voice annotations. The whole dataset
contains 93 tracks where 61 correspond to the training set and 16 tracks are used respectively for the test
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Figure 9: Objective and perceptual BASS quality results comparison on the test-fold of the MedleyDB dataset.

and the validation. Since the separated tracks of each source are not available, this dataset is only used
for singing voice detection.

• MedleyDB [35] contains 122 music pieces of different styles, available with the separate multi-track instru-
ments (60 with and 62 without singing voice). This, allows to build a flat instantaneous single-channel
mixture mix to fit the signal model proposed by Eq. (1). We have made a split on this dataset which
preserve the ratio of voiced-unvoiced musical tracks while ensuring that each artist is only present once
on each fold. Finally, the training dataset contains 62 tracks, the test set 36 tracks and the validation 24
tracks. For the source separation and the singing voice detection tasks, we only focus on 50 music tracks
containing singing voice.

• MIR1K [43] contains 1000 musical excerpts recorded during karaoke sessions with 19 different non-
professional singers. For each track the voice and the accompaniment is available. We propose to split
this dataset to obtain 828 excerpts for the training and 172 excerpts for the test set (containing only the
singers ‘HeyCat’ and ‘Amy’).

4.2 Blind Source Separation

Now, we compare the source separation performance respectively obtained on MIR1K (voice/music) and on
MedleyDB (voice/music/drums) datasets using the investigated methods: KAM-REPET, KAM-CUST, RPCA
and Jeong-Lee methods. For each musical track, the isolated source signals are used to construct mixtures
through Eq. (1) on which the BASS methods are applied. Isolated signal are also used as references to compute
the source separation quality measures. Each analyzed excerpt is sampled at Fs = 22.05 kHz and each method
is configured to provide the best results according to Section 2:

• KAM-REPET is a variant of the original REPET algorithm proposed by A. Liutkus in [20] which uses a
local time-varying tempo estimator to separate the leading melody from the repetitive musical background.
To obtain 3 sources (on MedleyDB), this method is combined with the HPSS method [19] with h = w = 19
(as preprocessing) to separate the percussive part.

• KAM-CUST is the new proposed method (cf. Section 2.4) based on the KAM framework using a supervised
kernel training step. In our experiment, we directly train the kernels on the isolated reference signals used
to create the mixtures. Trained kernels are configured such as h = w = 19.

• RPCA corresponds to our implementation of this method with λ = 2√
max(F,T )

, µ = 10λ and Niter = 1000.

As for the KAM-REPET method, this approach can be combined with the HPSS [19] and F0-filtering to
provide 2 or 3 sources when it is required.

• Jeong-Lee-14 corresponds to our implementation of Algorithm 2 with α = 1/4, φ = 1/40, Niter = 200,
γ=1/4.

The results displayed in Fig. 8 (MIR1K) and in Fig. 9 (MedleyDB) use the boxplot representation [44] and
measure the BASS quality in terms of RQF, SIR and Overall Perceptual Score (OPS) provided by BssEval2

[25,45]. Jeong-Lee-14 and KAM-REPET obtain the best SIR results on MIR1K for separating the voice without
drums separation (cf. Fig. 8). Interestingly, Jeong-Lee-14 can significantly outperforms other methods for voice
separation on MIR1K, but it can also obtain the worst results on MedleyDB. From another side, RPCA and
KAM-REPET obtain the best SIR results for separating the voice in combination with drums separation (cf.
Fig. 9) on MedleyDB. Unfortunately, KAM-CUST fails to separate the voice properly. However it can obtain
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the best results for accompaniment separation. This can be explained by the variability of a singing voice
spectrogram which is not sufficiently modeled by our training Algorithm. At the contrary, better results are
provided for the accompaniment which has a more stable time-frequency structure. This can also be explained
by MedleyDB for which several references signal are not well isolated. This produces errors in the trained
kernels which are used by KAM-CUST.

4.3 Singing voice detection

Each evaluated method is configured to detect the presence of a singing voice activity on each signal frame of
length 371.5 ms (8192 samples at Fs =22.05 kHz) by steps of 30 ms. In order to compare the performance of
the different proposed singing voice detection methods, we use the recall (Rec), precision (Prec) and F-measure
(Fmeas) metrics which are commonly used to assess Music Information Retrieval (MIR) systems [46]. Rec (resp.
Prec) is defined for each class (i.e. voice (v) and music (hp)) and is averaged among classes to obtain the avRec

(resp. avPrec). The F-measure is thus obtained by computing the harmonic average between avRec and avPrec

such as:
Fmeas = 2

avRec · avPrec

avRec + avPrec
. (9)

4.3.1 Unsupervised singing voice detection

In this experiment we respectively apply the 4 investigated BASS methods described in Section 2 and 4.2 to
estimate the voice source and the musical parts before applying the unsupervised approach described in Section
3.1. Our results obtained on the MedleyDB and the MIR1K datasets are presented in Tables 3 (a) and (b).
The results are compared to those provided by the oracle which corresponds to the Algorithm 1 which apply a
Wiener filter with α = 2 and where the isolated reference signals are assumed known. Interestingly, the best
results are reached using the KAM-REPET method without HPSS on MedleyDB and with Jeong-Lee-14 on
MIR1K with a F-measure above 0.60.

4.3.2 BASS + supervised singing voice detection

In this experiment, we combine a BASS method with the best SVM-based proposed supervised singing voice
detection method as investigated in Table. 2 (i.e. using TTB + SCT). According to Tables 4 (a) and (b),
combining BASS with supervised singing voice detection can slightly improve the precision of detection in
comparison with the unsupervised approach (in particular KAM-REPET and KAM-CUST). However, this
approach shows a limited interest of BASS for supervised singing voice detection, in comparison with other
approaches. In fact, this approach does not allow to overcome the best score reached through the unsupervised
method, in particular the maximal recall reached for MedleyDB which remains equal to 0.59. A solution not
investigated here could be to train models specific to the results provided by a BASS, but without the insurance
to obtain better results than without using BASS.

4.3.3 Supervised singing voice detection: comparison with CNN

Finally, we compare all the proposed approaches (unsupervised and supervised) in terms of singing voice de-
tection accuracy with an implementation of a recent state-of-the-art method [23] based on CNN. The results
obtained on a single dataset and after merging two datasets, are respectively displayed in Tables. 5 (a) and
(b). For the sake of clarity, we only compare the average recall results which is the most important metric.
Table 5 (b) considers two experimental cases. The Self-DB case considers two datasets as a single dataset
by merging their respective training parts (e.g. MIR1K-train + JAMENDO-train) and by merging their test
parts (e.g. MIR1K-test + JAMENDO-test). The cross-DB case uses two merged datasets for the training step
(e.g. MIR1K-train + JAMENDO-train) and uses the third dataset for testing the singing voice detection (i.e.
MedleyDB-test). Results show that the CNN-based method outperforms the proposed unsupervised and the
supervised methods when it is applied on single datasets (cf. (a) and seld-DB (b)). However, the unsupervised
approach can beat CNN in cross-DB (b) case. This is visible for the MIR1K where the best unsupervised
methods (RPCA and Jeong-Lee-14) obtain a recall equal to 0.68 when the CNN-based method is trained on
Jamendo+MedleyDB only 0.65. This result shows that an unsupervised approach can also be of interest to
avoid overfitting or when no training dataset is available. Moreover, our proposed supervised methods can
obtain comparable results to CNN in the cross-DB case except for singing voice detection applied on MIR1K.

3BSS Eval and PEASS: http://bass-db.gforge.inria.fr/bss_eval/
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Table 3: Unsupervised voice detection results using BASS (bold values denotes best results except for Oracle).

(a) with and without drums separation on the MedleyDB
dataset

av. Rec. av. Prec. F-meas

Oracle 0.71 0.66 0.68
KAM-REPET 0.59 0.68 0.63

KAM-REPET + HPSS 0.54 0.69 0.60
KAM-CUST 0.50 0.62 0.55

RPCA 0.52 0.76 0.61
RPCA + HPSS 0.53 0.75 0.62
Jeong-Lee-14 0.50 0.65 0.56

(b) without drums separation applied on the MIR1K dataset

av. Rec. av. Prec. F-meas

Oracle 0.82 0.72 0.76
KAM-REPET 0.65 0.75 0.69
KAM-CUST 0.57 0.55 0.55

RPCA 0.68 0.61 0.64
Jeong-Lee-14 0.68 0.78 0.72

Table 4: BASS combined with supervised singing voice detection results (bold values denotes best results except
for Oracle).

(a) with drums separation applied on the MedleyDB dataset

av. Rec. av. Prec. F-meas

Oracle 0.71 0.68 0.69
KAM-REPET + HPSS 0.52 0.76 0.61

KAM-CUST 0.59 0.64 0.61
RPCA + HPSS 0.55 0.69 0.61
Jeong-Lee-14 0.49 0.64 0.55

(b) without drums separation applied on the MIR1K dataset

av. Rec. av. Prec. F-meas

Oracle 0.67 0.61 0.63
KAM-REPET 0.60 0.70 0.64
KAM-CUST 0.52 0.62 0.56

RPCA 0.55 0.74 0.63
Jeong-Lee-14 0.51 0.72 0.59

Table 5: Comparison of the proposed methods with [23] measured in terms of average recall for singing voice
detection.

(a) evaluation on each dataset

Dataset Best unsupervised SVM (MFCC+SCT) CNN
Jamendo 0.58 0.81 0.86
MIR1K 0.68 0.77 0.9

MedleyDB 0.59 0.79 0.86

(b) evaluation on merged datasets

Training datasets SVM (MFCC+SCT) CNN
self-DB cross-DB self-DB cross-DB

Jamendo + MIR1K 0.81 0.73 0.89 0.75
Jamendo + MedleyDB 0.80 0.59 0.86 0.65
MedleyDB + MIR1K 0.80 0.76 0.84 0.77

5 Conclusion

We have presented recent developments for blind single-channel audio source separation methods, which use
morphological filtering of the mixture spectrogram. These methods were compared together for source separation
and using our new framework for singing voice detection which uses BASS as a preprocessing step. We have
also proposed a new contribution to extend the KAM framework to automatically design kernels which fits any
given audio source. Our results show that our proposed KAM-CUST method is promising and can obtain better
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results than KAM-REPET for blind source separation. However, our training algorithm is sensitive and should
be further investigated to provide discriminative source-specific kernels. Moreover, we have shown that the
unsupervised approach remains of interest for singing voice detection in comparison with more efficient method
such as [23] based on CNN. In fact, the weakness of supervised approaches can become visible when large
databases are processed or when a few annotated examples are available. Hence, this study paves the way of a
future investigation of the KAM framework in order to efficiently design source-specific kernels which can be used
both for source separation or for singing voice detection. Future works will consider new practical applications
of the proposed methods while improving the robustness of the new proposed KAM training algorithm.
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[23] J. Schlüter, “Learning to pinpoint singing voice from weakly labeled examples,” in Proc. of the International
Society for Music Information Retrieval Conference (ISMIR), 2016, pp. 44–50.

[24] P. Flandrin, Time-Frequency/Time-Scale analysis. Acad. Press, 1998.

[25] E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement in blind audio source separation,”
IEEE/ACM Trans. on Audio, Speech, and Language Processing, vol. 14, no. 4, pp. 1462–1469, Jul. 2006.

[26] V. Emiya, E. Vincent, N. Harlander, and V. Hohmann, “Subjective and objective quality assessment of
audio source separation,” IEEE/ACM Trans. on Audio, Speech, and Language Processing, vol. 19, no. 7,
pp. 2046–2057, 2011.

[27] M. Fontaine, A. Liutkus, L. Girin, and R. Badeau, “Explaining the parameterized wiener filter with alpha-
stable processes,” in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
(WASPAA), Oct. 2017.

[28] M. Najim, Modeling, estimation and optimal filtration in signal processing. John Wiley & Sons, 2010,
vol. 25.

[29] D. Fourer, F. Auger, and P. Flandrin, “Recursive versions of the Levenberg-Marquardt reassigned spectro-
gram and of the synchrosqueezed STFT,” in Proc. IEEE International Conference on Acoust., Speech and
Signal Process. (ICASSP), Mar. 2016, pp. 4880–4884.

[30] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica
D: Nonlinear Phenomena, vol. 60, no. 1-4, pp. 259–268, 1992.

[31] Z. Lin, M. Chen, L. Wu, and Y. Ma, “The augmented lagrange multiplier method for exact recovery of a
corrupted low-rank matrices,” in Mathematical Programming, 2009.

[32] W. S. Cleveland and S. J. Devlin, “Locally weighted regression: an approach to regression analysis by local
fitting,” Journal of the American statistical association, vol. 83, no. 403, pp. 596–610, 1988.

[33] D. FitzGerald, A. Liukus, Z. Rafii, B. Pardo, and L. Daudet, “Harmonic/percussive separation using
kernel additive modelling,” in 25th IET Irish Signals Systems Conference 2014 and 2014 China-Ireland
International Conference on Information and Communications Technologies (ISSC 2014/CIICT 2014),
Jun. 2014, pp. 35–40.

[34] A. Liutkus, Z. Rafii, R. Badeau, B. Pardo, and G. Richard, “Adaptive filtering for music/voice separation
exploiting the repeating musical structure,” in Proc. IEEE International Conference on Acoust., Speech
and Signal Process. (ICASSP), Kyoto, Japan, 2012, pp. 53–56.

[35] R. Bittner, J. Salamon, M. Tierney, M. Mauch, C. Cannam, and J. P. Bello, “MedleyDB: A multitrack
dataset for annotation-intensive MIR research,” in Proc. of the International Society for Music Information
Retrieval Conference (ISMIR), Taipei, Taiwan, Oct. 2014.

15



[36] Y. Ikemiya, K. Itoyama, and K. Yoshii, “Singing voice separation and vocal f0 estimation based on mutual
combination of robust principal component analysis and subharmonic summation,” IEEE/ACM Trans. on
Audio, Speech, and Language Processing, vol. 24, no. 11, pp. 2084–2095, Nov. 2016.
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