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Proposed Method 
Given: mix, identified playlist, 

and tracks 
Two steps:  

rough DTW alignment of 
concatenated MFCCs of 
tracks with mix 
→ relative positioning of 

the tracks in the mix, 
and 

→ speed up or slow down 
for beat-synchronous 
mixing 

refine alignment to close in 
to sample precision:  
minimum sum of square 
signal distances of shift-
ed versions 

Evaluation 
Three collections of DJ mixes: 

artificial mix: √ 
existing mix collections:  
no accurate track start/end 
times 

BUT:  
sample accurate alignment 
can be verified by attempt-
ing to remove the aligned 
track from the mix: subtract 
signal, observe resulting 
drop in energy (see figure)

Needed Components

Towards Extraction of Ground Truth Data from DJ Mixes
Diemo Schwarz, Dominique Fourer (first.last@ircam.fr)
UMR 9912 STMS, IRCAM-CNRS-UPMC 
http://www.ircam.fr,  http://abcdj.eu    

ABC_DJ Artist to Business to 
Business to Consumer  
Audio Branding System
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Context: Understanding DJ Culture & Practices 
Important part of popular music culture  
Outcomes:  

- musicological research in popular music 
- studies on DJ culture 
- computer support of DJing 
- automisation of DJ mixing 

Problem:  Lack of Annotated Databases of  
DJ Mixes or DJ Sets 

Very large scale availability (millions!) of DJ mixes, often with tracklist, e.g. 
http://www.mixcloud.com, YouTube, podcasts. 

Only very few annotated databases, e.g. Sonnleitner et. al. [17] 

Existing research in studio multi-track mixing in DAW [14, 11, 12, 2],  
with ground truth databases [4], crowd-sourced knowledge generation [5]. 

Existing work on DJ production tools [3, 6, 9, 1, 13], but no information retrieval 
from recorded mixes. 

estimate fade curves for volume, bass/treble, 
and parameters of other effects (compression, 
echo, etc.)  
addressed in [7, 8, 15]

identify contained tracks (fingerprinting) 
addressed in [17]

get track start and end in mix 
determine tempo changes  

(beat-aligned mxing) 
suggested here

derive genre and social tags attached to the music 
→ inform about the choices a DJ makes when creat-
ing a mix 
downstream research enabled by DJ mix annotation


